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Abstract of the Dissertation

Transformational Maintenance by Reuse of Design Histories
by
Ira David Baxter
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Professor Peter Freeman, Chair

Keywords: software, maintenance, evolution, reuse, replay, history, design,
formal, transformation, implementation.

This thesis provides theory and procedures for modifying software artifacts im-
plemented by a formal transformation process. Installing modifications requires know-
ing not only what transformations were applied (a derivation history) to construct
the artifact, but also why the application sequence ensures that the artifact meets
its specification. The derivation history and the justification are collectively called a
design history. A Design Maintenance System (DMS), when provided with a formal
change called a maintenance delta, revises a design history to guide construction of
a new artifact. A DMS can be used to integrate a stream of deltas into a history,
providing implementations as a side effect, leading to an incremental-evolution model
for software construction.

We provide a broadly applicable formal model of transformation systems in
which specifications are performance predicates, subsuming the functional specifica-
tions which are traditional for transformation systems. Such performance predicates
provide vocabulary used in the design history to describe the effect of applying sets
of transformations.

A nonprocedural, performance-goal-oriented Transformation Control Language
(TCL) is defined to control navigation of the design space for a transformation system.
Recording the execution of a TCL metaprogram directly provides a design history.

A complete classification of, and representation for, the set of possible main-
tenance deltas is given in terms of the inputs defined by the transformation system
model. Such deltas include not only specification changes, but also changes to imple-
mentation support technologies. Delta integration procedures for revising derivation

x1



histories given functional or support technology deltas are provided, based on rear-
ranging the order of transformations in the design space. Building on these opera-
tions, integration procedures that revise the design history for each type of delta are
described. An agenda-oriented TCL execution process dovetails smoothly with the
integration procedures.

Our DMS is compared to a number of other maintenance systems. By using
an explicit delta and verified commutativity, our DMS often reuses transformations
correctly when others fail.
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Practical Tips for Maintainers

For a Friend Assigned to a Maintenance Group
by David H. H. Diamond

The fellow who designed it

Is working far away;

The spec’s not been updated

For many a livelong day.

The guy who implemented it is
Promoted up the line;

And some of the enhancements
Didn’t match to the design.
They haven’t kept the flowcharts,
The manual’s a mess,

And most of what you need to know,
You’ll simply have to guess.

We do not know the reason,
Why the bugs pour in like rain,
But don’t just stand here gaping!
Get out there and MAINTAIN!

From Datamation, June 1976, p. 134.
Copyright 1976 Cahner’s Publishing Co., Inc.
Reprinted with permission.
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Chapter 1
Transformational Maintenance

Chapter summary. Software maintenance consumes the majority of energy
currently expended on software systems. This thesis describes methods for
integrating changes, defined formally as maintenance deltas, into an imple-
mentation, given a previous implementation constructed via a formal software
construction scheme, and given the design decisions that drove the previous im-
plementation. We summarize the context and focus of this work, and outline
research assumptions and questions for further reference. The chapter closes
with a summary of results and an outline of the rest of the dissertation.

1.1 Introduction

Software maintenance consumes a large fraction of the lifecycle costs of software
systems [Bro75, CSM*79, 1.S80, Boe81, Guis3, RPTUS84]. Decreasing the cost of that
fraction of the lifecycle is naturally the first place to look in decreasing overall lifecycle
costs. It appears unlikely that the demand for change will decrease, leaving only the
hope of decreasing the actual cost of performing maintenance. Remarkably, there has
been less research effort in this area than one would expect [Sch87, HH88| considering
the apparent payoff.

Maintenance is fundamentally concerned with change to existing artifacts’.
Implementation is about constructing new artifacts. This thesis describes an approach
to software construction that we call Incremental Fvolution. This approach blurs the
traditional software waterfall lifecycle phases of implementation and maintenance.
The idea is that software construction and maintenance would be better considered
as a process of integrating a stream of changes into an artifact and its supporting con-
struction technologies to produce a stream of software versions with updated support

"'While this thesis is mostly about software artifacts, we see little difference between the construc-
tion of software and the construction of (blueprints for) other types of artifacts. We use artifact in
the general sense.



2 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

technologies, allowing the process to be cycled indefinitely (Figure 1.1%). Artifacts
would then be built by a continuous design process [Mar86]; in our version, the result-
ing artifacts would be compared against desires to produce deltas used as feedback

(Figure 1.5).

DEFINITION 1.1: Incremental Evolution. Any artifact construction process that
generates a stream of artifacts by integrating a series of changes, to an artifact spec-
ification and/or its supporting construction technologies, into an implementation. O

Managing a software process without tools can be difficult. We describe a class of
tool for managing incremental evolution: a Design Maintenance System (Figure 1.8).
Such systems combine maintenance deltas, using a theory of delta integration, with
formal design information consisting of a program specification, its implementation,
and a design to produce a revised implementation and a revised design. The delta
integration procedures determine what parts of the design can be reused directly,
how to construct new parts of the design, and how to repair those parts which will be
only partially retained. We call such a system a Design Maintenance System because
the emphasis is on maintaining the design, with the implementation obtained as a
by-product rather than being the only product. This differentiates our approach
from conventional maintenance methods which usually end up maintaining just the
implementation. We need the design to decide what can be reused in the face of a
delta. We maintain the design because that is more efficient than regenerating it on
demand.

DEFINITION 1.2: Design Maintenance System. A set of tools that revises an arti-
fact design (and its corresponding implementation) according to formal maintenance
deltas defined by changes to inputs of the artifact construction process. a

Automation requires formality. We build a Design Maintenance System on
top of a Transformation System to provide the necessary base formality. Using a
transformation system provides us with a formal model of a software construction
process. This forces all aspects of specification, design, and lifecycle issues to appear
as formal entities of some sort, thereby making it possible, at least in theory, to
capture these entities. Implementing delta integration routines in the context of
transformation systems produces what we call transformational maintenance.

DEFINITION 1.3: Transformational Maintenance. Revision of an artifact carried out
in the context of transformation systems. a

Implementing altered specifications is likely to be more efficient if one reuses
relevant design decisions made in previous implementations. For a transformation

2Throughout this thesis, diagrams composed solely of boxes and arrows are SADT diagrams
[Ros77, Fai8h, MM8&8] unless otherwise noted.
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Requested A Code Softxivare
Changes Versions
Integrate
Deltas

_|Implementation Updated
Technologies Technologies

Figure 1.1: Incremental Evolution by Integrating Deltas

system, such design decisions can be captured in a structure we call a design history.
Thus efficient transformational maintenance is made possible by the reuse of a design
history.

This thesis provides definitions, mechanisms, and an architecture for a
Design Maintenance System, built on top of transformation systems, to show that
Incremental Evolution is possible.

Our work focuses on reducing the cost of software over its life by making main-
tenance more effective. We avoid the high cost of rediscovery of design information
by choosing a formal software construction method based on a transformation system
and capturing that design information during software construction. Captured design
information is compared to formal changes, and obsolete design decisions are removed.
A new implementation is then derived from the remaining design information.

The rest of this chapter provides a brief overview of the problem of design
maintenance for transformation systems and our particular solution.
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1.2 Problem Context

We start by considering a number of lifecycle models to establish a motivation
for incremental evolution. We then move on to consider design reuse as a means for
enhancing the artifact maintenance process.

1.2.1 Software Lifecycle Models

We will briefly discuss several lifecycle models to establish a motivation for the
notion of Incremental Evolution:

e (Conventional
e Transformational
e Incremental Specification

e Incremental Evolution

Conventional Lifecycles: A conventional software construction lifecycle is shown
in Figure 1.2. Somehow, informal requirements are converted into some informal
specification of the desired program, and the program is constructed manually. The
result is compared to the desires, and informal specification of the errors are somehow
converted into changes in the code. A benefit of the conventional approach is that
the implementation, although expensive, only has to be constructed once; changes
are added incrementally by very smart agents called programmers. The problem is
that it is difficult and therefore costly for those agents to determine how to install a
change.

Transformational Implementation: The transformational implementation ap-
proach to software construction [PS83, Agr86, Fea86] constructs an implementation
in a conventional programming language by repeated application of optimizing trans-
forms to a formal program specification constructed from informal requirements
(Figure 1.3). Balzer [Bal85a] suggests that the transformational paradigm could
significantly aid the maintenance process, by focusing maintenance on the abstract
specification rather than the code. The formal specification or its implementation
is validated against the requirements, and any noted inconsistencies cause the for-
mal specification to be changed appropriately. After each change, the transformation
system is presented with the entire revised specification and derives a new implemen-
tation from scratch. The benefit of this approach is that changes are made directly to
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Figure 1.2: Conventional Software Construction
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the specification rather than the code, and are presumably easier to make and under-
stand because they are not buried under a mountain of programming optimizations.
We call such an approach transformational maintenance, as maintenance takes place
in the context of a transformation system.

While such an approach technically solves most of the maintenance problem,
it does so by changing it into the transformational implementation problem. Initial
transformational implementations are expensive to obtain and we would expect that
the cost of each full re-implementation will be approximately the same as the cost
of the initial implementation (if the changes are small). Such a naive approach to
re-implementation would leave transformational maintenance impractical. One pos-
sible way to speed the re-implementation process to reuse design information from
preceding implementations of the same artifact to avoid the cost of making all the
design decisions again. To do this, one must somehow be able to decide what design
information is relevant for the revised specification. With a pure transformational
implementation model, the transformation system sees only a new specification, and
at best possesses only an old design. How is it to decide what part of the design is
relevant to the new specification? We will return to this topic shortly.

Incremental Specification: Feather [Fea84] suggests that specifications are not
constructed en toto; rather, that they may evolve by elaboration of simpler specifi-
cations. The idea is that the informal requirements describe a number of differing
aspects, and that one constructs a formal specification by starting with a simple formal
specification that characterizes one of those aspects, and then changes that specifi-
cation to accommodate the rest of the informal requirements as convenient. Using
formal evolution transforms to modify a formal specification, Feather and Johnson
[JF90, Fea89a] pursue the notion of incremental specification, assuming the lifecycle
model in Figure 1.4. The monolithic revised specifications are fed to a transforma-
tion system for implementation. While the incremental specification approach may
ease the problem of acquiring and maintaining the specification, it does not particu-
larly help in obtaining an implementation; it has exactly the same problem acquiring
revised implementations as transformational implementation. The incremental speci-
fication paradigm qualifies as a limited type of incremental evolution by our definition
(it fails to address changes to the supporting construction technology), but it is not
necessarily efficient.

Incremental Evolution: We envision carrying the incremental process to the ex-
treme by integrating formal entities called maintenance deltas into the ultimate arti-
fact (Figure 1.5) rather than just the specification. We call this process incremental
evolution. The difference between incremental evolution and Balzer’s scheme of reim-
plementing a modified specification is how far into the implementation process the
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FEvolution Formal Specification
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Figure 1.4: Incremental Specification followed by Transformation
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deltas survive. In Balzer’s scheme, the deltas disappear once the specification has
been changed. For incremental evolution, we expect the deltas to directly guide
changes to the implementation.

We generalize the idea of evolution transforms by allowing two sources of formal
deltas:

o customer desires compared to the current version of the artifact (requirements
analysis and validation)

e new or changing support technology used to specify or implement the artifact
(domain engineering [Ara88])

These two sources of change remain active regardless of artificial divisions of lifecycle
phases into implementation and maintenance. The deltas must be with respect to
something; we assume that deltas induced by failure to meet requirements are applied
to some sort of a specification, and that deltas to support technology are applied to
reusable libraries of mechanisms available to the implementation process. We remark
that commitment to the notion of specification does not, however, necessarily commit
an incremental evolution scheme to any underlying transformation system, although
we will pursue that approach in this thesis.

The requirements analysis process produces a stream of deltas as in the in-
cremental specification approach; the initial stream provides the basis for an initial
specification. The validation, testing and tuning processes are expected to compare
the informal, desired effects of executing the current version of a software artifact
against its actual effect, and suggest changes that need to be made to the speci-
fication; how this is accomplished is outside the scope of this thesis. The domain
engineering process is expected to determine the support technologies (implementa-
tion mechanisms and successful implementation criteria based on understanding of
the problem domain and the possible implementation technologies) and suggest cor-
rections to the support technologies available; this activity is similarly outside the
scope of this thesis. Both processes affect the design and implementation of desired
programs.

The advantages of an incremental evolution paradigm are:

e The unification of implementation and maintenance

Incremental specification/maintenance

Support for a dynamic support technology base

Potential for formal documentation, literally, of the changes made

Such an incremental evolution system will be practical only if we solve the prob-
lems of generating formal maintenance deltas, and integrating those deltas efficiently
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into an existing implementation. This thesis concentrates on those aspects, shown in
bold in Figure 1.5, implemented in a manner to make transformational maintenance
much more efficient than simple transformational re-implementation of a changed
specification.

1.2.2 Effective Maintenance Needs the Design

An essential part of a program for maintenance purposes is the design, and it is
usually lost, abandoned, incorrect or inaccessible. Without the design, understanding
and modifying a program is nearly impossible [Sol87, Nin89]. Sneed [Sne89] describes
4 major software engineering efforts that ended in disaster precisely because trying
to maintain the design was perceived as impractical; consequently the design was
abandoned and the projects spiralled into chaos.

One can attempt to retrieve the lost design information by inspecting the code;
Chikofsky [CC90] provides a brief overview of this area. There are number of re-
search efforts whose purpose is to recover lost design information, [ABFP86, Wil87,
Wat88, Big89b, Nin89, BCC89, SJ88]. Recently, an entire industry has appeared,
called “re-engineering” [CS89, RD88] which provides tools for reorganizing existing
software systems based on recovered low level design information. But we think those
approaches are mis-directed: the design should never have been lost in the first place.

The reason that designs are lost is partly due to their informality in conventional
design processes, which makes them difficult to record, and partly due to short-term
organizational pressures to complete a product rather than document its structure.
One approach to design capture and retention is to combat informality by using a
formal software construction method, and adding automation to that construction
method to capture the design as the implementation occurs, so that completing the
product ensures the design is captured. This suggests the use of a transformation
system to generate formal design information, and finding ways of storing that design
information.

1.2.3 Design Information

To capture design information about an artifact, we must first know what design
information is. We summarize the notion of designing with Pidgeon’s remark [Pid90]

To design is to decide.

Surveys of design can be found there and in [Mos85b].
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There are numerous types of design information, of which the following are
critical for our purposes:

e Design knowledge: understanding of desired properties and construction tech-
niques for classes of artifacts

e The specification of a particular artifact
o Design decisions (traditionally called the design) for that artifact

e Design rationale: a demonstration that the design decisions produce a satisfac-
tory artifact

Design knowledge provides general information needed to describe and imple-
ment similar artifacts. The description knowledge provides vocabulary and metrics
with which one can characterize or measure interesting properties of an artifact or
its component structures. Implementation knowledge provides alternative implemen-
tation possibilities as well as information useful in determining tradeoffs between
choices.

A specification gives a description of satisfactory artifacts. Without a specifica-
tion, a design would have no purpose.

Design decisions describe alternatives chosen while implementing the artifact.
We assume that any artifact design process involves a series of decisions about measur-
able properties of the final artifact, especially those which determine the component
structures of that artifact. We insist that any reasonable artifact have only consistent
properties. Following Pidgeon [Pid90], we define:

DEFINITION 1.4: Design Choice. An unresolved choice of value for an artifact prop-
erty, represented by the property name of interest and a set of mutually exclusive
possible alternatives. a

The alternatives may list different possible implementations of portions of the
artifact. It is the purpose of the design process to make such choices in a way that
the resulting artifact satisfies the specification, although a design may be inconsistent
with a specification®. Design choices are resolved as decisions:

DEFINITION 1.5: Design Decision. Specification of a constraint on a design choice
determining a subset of alternatives from which a selection will be made. a

3 A specification is an artifact produced by design from customer requirements, but that is design
at another level.
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One or many decisions related to the same design choice may be required before
a unique alternative is determined, depending on the strength of the constraints; it is
even possible to overconstrain a design choice so that the set of selectable alternatives
is empty. The minimal information about a design decision is a:

DEFINITION 1.6: Design Selection. A property name and a distinguished alternative
defining its value. a

The classic blueprint is a representation of a set of design selections; it contains no al-
ternatives. Design information should ideally include all design decisions made during
the implementation process, or at least enough design selections to uniquely determine
the outcome of any possible design choice. This uniquely determines the implemented
artifact. Classes of satisfactory artifacts are defined by sets of design selections that
uniquely determine properties of the artifact relevant to the specification.

The design rationale explains how the various design selections satisfy the spec-
ification.

DEFINITION 1.7: Design Rationale. An information structure that justifies how the
implementation (consequences of the design selections) satisfies its specification. O

Technically, a design rationale is not required because one should be able to deduce
satisfaction from the design decisions alone. In practice, however, the cost of deter-
mining just how the specification is satisfied is so complex that a design rationale
provides an immense aid to those that would understand the design.

Collectively, the design rationale, the design decisions, and the specification
make up design information (see Figure 1.7) specific to a particular artifact. Design
knowledge is needed to generate the design rationale.

1.2.4 Design Reuse

For conventional software construction processes, considerable research has been
focused on reuse of code. Reusing other software process products, such as design
information, has been proposed as a method for lowering implementation costs [Fre80]
of new artifacts.

Arango [Ara88] models reuse roughly as follows:

Identification of a class of interesting reusable information
Selection of a method for reusing that type of information
Capture of appropriate reusable information for the method

Discovery of a situation for which the method has promise

AN

Application of the reuse method with the captured information
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Each type of design information can be reused in possibly different ways.
Captured design knowledge can be used to produce and answer queries about a de-
sired artifact, or to propose new implementations. A specification can be reused as
a starting point for similar artifacts. Design choices can be reused to regenerate al-
ternatives, while design selections can be reused only to determine outcomes of such
choices. Design rationales can be reused to check the validity of design choices.

Design knowledge related to descriptions is implicitly reused as vocabulary for
specifications. Most transformation systems reuse design implementation knowledge
in the form of a transformation library. Higher level design implementation knowledge
has been reused in the form of implicit control knowledge such as the refinement
phases of REFINE compiler [Gol89]. and TAMPR transformation system [BM84], as
well as in the form of explicit procedural metaprograms such as PADDLE ([Wil83])
and Feather’s nonprocedural notion of CONTEXT [FeaT9].

1.2.5 Design Replay

A form of design reuse of great interest is that of design replay, which reuses
design decisions to implement a new artifact given a slightly changed specification®.

A design history is a (possibly partially ordered) sequence of actions taken by
a designer during a design process. Such actions can include analysis of consequences
as well as making design decisions. A design history contains information that was
probably hard to obtain, and therefore has potential reuse value.

If one has a design history, then a particular reuse method is to replay it by
applying its component actions in the specified order in the context of a changed
specification. Problems occur when actions reference entities that are irrelevant to
the new specification, when replayed design selections ultimately fail to satisfy the
new specification, and when the existing actions fail to address new needs imposed by
the new specification. What makes a replay method interesting is how it addresses
these problems.

Capturing a design history requires that design actions be representable. A
way of ensuring that at least some aspects of the design process are capturable is
to implement that process as a transformation system. In a transformation system
context, one can treat the sequence of applications of particular transformations as
design selections and capture just the transformation sequence. This kind of design

4A situation in which one has a library of designs and an absolutely fresh specification can be
converted into this case by choosing the design library element whose artifact specification most
closely matches the new specification. Since we are interested in maintenance, we do not consider
the matching problem further.
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history is called a derivation history. For replay, one reapplies these transformations
in their original sequence.

Mostow [Mos85¢c, Mos86] provides a list of reasons why design derivations are
hard to replay. One of difficulties is that goal information is not present in a derivation
history; there is no design rationale. A second problem is that one can only trivially
replay the derivation up to the point where a change is required; replaying from this
point on is blocked because the original conditions no longer apply.

A key insight is that the decisions, made beyond the point where a change is
required in a design history, are not necessarily invalidated by the change.” We argue,
in fact, that the very large scale of any transformational implementation ensures that
many of the decisions beyond the change point are, in fact, applicable. Effective reuse
of a drvh requires reuse of decisions beyond the blocking point. Even those decisions
which no longer apply directly may contain some useful information extractable by
analogy [Car85]. A consequence of these insights is that methods for replay hardly
ever use the trivial method without some interesting variations.

A number of transformation systems exist that do some form of design his-
tory replay for software construction (PADDLE [Wil83], ®-NIX [Bar89], finite dif-
ference synthesizer [DKMWS89], REFINE [Gol89], IDEA [Lub89], PDS [CHTS1]),
DIOGENES [MF89a], [MF89b]). Design replay has also been used for hardware de-
sign (REDESIGN [SM84, SM85], ARGO [HAS87], BOGART [MB87], although we
don’t think the problems are fundamentally different. We sketch a few of these sys-
tems here.

Partsch [PS83] describes replay in Cheatham’s system as repeated application of
previously used refinement (transform) rules until none is applicable. The implication
is that the transform sequence is also lost. This is undesirable as many optimizing
transformations in an implementation require other conditioning transformations be
applied first [Fic82, Fic85], so loss of sequencing must imply some loss of optimiza-
tions. Also, different early sequencing will lead to implementations radically different
than the original, and this is surely not desired. We see that order is important and
must be preserved.

Goldberg’s system [Gol89] records the exact sequence of the applied set of trans-
formations. The point where each replayed transformation is applied is adjusted in
an attempt to account for the change in the specification. This system appears to
block when a replayed transformation fails to be applicable.

SBaxter [ABFP86] suggests that the actual historical order is not always relevant, and, in fact,
hinders the ability to maximize the re-use of an established design.
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The BOGART system [MB87] constrains a derivation history to consist of re-
cursive decompositions of a functional specification into successively more primitive
functions. The derivation history actually takes the form of a tree, with the root
being the initial specification, and the set of branches emanating from a node specify
the decomposition of that node into sub-nodes. The tree-structure provides a par-
tial order on the application sequence of the transformations. Such histories can be
replayed by replaying each branch until a blocking point is reached along that branch.

The PADDLE [Wil83] system, rather than capturing a derivation history, in-
stead captures a derivation history generator, called a program development as a set of
plans for implementation. This language shares some similarities to hierarchical plan-
ning systems [Sac77]. A plan may be achieved by any of several subplans, providing a

method of handling decisions which no longer apply. Replay consists of re-executing
the generator. Even so, PADDLE still blocks at the first decision it cannot handle.

1.2.6 Problem Context Summary

We are interested in implementing tools to support an Incremental Evolution
lifecycle model. Doing so seems to require the reuse of design information captured
for a predecessor implementation. Such design information comes in several forms,
including design knowledge, the specification, a design history containing the design
decisions, and a rationale for the design. Such design information can be captured
in the form of a design history, and reused when the specification changes. A major
obstacle to such reuse is taking into account the effect of the specification change.

1.3 Transformational Maintenance
by Reuse of Design Histories

Incremental Evolution requires that changes be integrated into implementations.
If we choose a transformational implementation base model, then we can formalize the
changes as maintenance deltas. Application of such formal maintenance deltas to the
specification and supporting infrastructure of the transformation system followed by
reimplementing provides us with an inefficient form of transformational maintenance.

The formal transformation system also allows much of the design information
involved to be formalized. Such formalization presents us with the possibility of
providing procedures for integrating the maintenance deltas into captured design his-
tories. We are reusing the design to produce a new design. A revised implementation
can then be extracted from the updated design. Assuming relatively small changes to
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the design, updating and extracting should be cheaper than having to reimplement
our specification from scratch.

A Design Maintenance System can be regarded as an efficiency enhancement to
the batch transformational maintenance model. Incremental Evolution implemented
via a Design Maintenance System avoids the repeated cost of rederivation by reusing
the design information (including the previous specification) collected in the previous
implementation cycle. It determines what part of the design information is still
relevant by comparing it to maintenance deltas; design information that is no longer
relevant is discarded, and a repair to the design that covers the delta is generated. The
effect over time is that of integrating deltas to achieve the desired implementation.

Existing design replay systems cannot express or use performance specifications,
and assume a fixed implementation technology base. We explicitly address perfor-
mance specifications, both in a transformational implementation context, and in a
replay context. Most replay systems capture and replay of just a derivation history;
we insist on the use of the entire design history, as it provides structuring for the
derivation history, thereby allowing a kind of damage control. Our design history
also suggests alternatives for portions of the derivation history which become invalid
because of the desired change. Our methods for delta integration preserve trans-
formations following blocking point in a derivation history to maximize reuse of the
history.
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. It is possible and practical to specify, formally, a software system.
. Such specifications can be formally converted into implementations.
. Specifications are more frequently modified than replaced when change is desired.

. Revisions to specifications are not massive.

Statistically, small changes in specification lead to small changes in implementation.

. There is an explicit relationship between specification and implementation called a

“design”.

. All of the possible changes one could possibly wish to make to an artifact are express-

ible as formal changes.

Figure 1.6: Preconditions for Transformational Maintenance

1.4 Research Assumptions

Our research has several fundamental assumptions, listed in Figure 1.6.

Reasonable justification for these assumptions can be found in everyday computing,
including:

1.

Many systems are specified informally, or more formally by coding them in con-
ventional computer programming languages such as Fortran or Prolog; special
languages for application generators are heavily used [Cle88].

Compilers [ASUS86], application generators, and transformation systems [PS83,

Agr86, Smi89]) convert “formal” specifications from a less executable form to a
more executable form.

. Most of the work invested in software is in maintenance, indicating that the

original specification was worthwhile; rarely is a specification entirely replaced.

. When requests for changes to software are made, the request itself is many times

made in incremental terms with respect to the original specification [“add this
function”, “speed that up”, “use this new hardware”, etc.].

. The amount of code changed in an application as a result of a change request

is relatively small compared to the size of the implementation [LLQ89, Sin83].

Designers convert specifications into programs; they rationalize each part of the
program as serving some purpose with respect to the rest of the program or the
specification, and thus a relationship between implementation and specification
really does exist.

We think none of the above points are really controversial. Precondition (7.) does

not have an everyday justification, so we will provide one in Chapter 6.
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Since our emphasis is on maintenance, we assume the necessary prerequisites
for a maintenance situation. In a transformational context, this consists of:

e the existence of a transformation system populated with transforms and control
hueristics sufficient to transformationally implement some class of specifications.

e a specification G — the goals for a particular software artifact,
e an implementation fs derived from the specification G

e a derivation history H consisting of the sequence of transformations applied to
generate the implementation

e a design history D which justifies the individual transformations chosen.
For each desired change, the following must be true:

e The desired change can be explicitly described.

e The transformation system must be able to implement the modified specification
in the absence of a design maintenance system.

e The expected cost of installing the change must be significantly less than simply
re-implementing.

It is not obvious that every desired change is describable. We will show, however,
that specification changes can be written down as formal expressions (maintenance
deltas) under reasonable assumptions about formal program specifications.

1.5 Thesis Statement

Our long term objective is to develop practical tools for performing incremental
evolution. Previous experience and research suggest that reuse of the current artifact’s
design is necessary for this to be effective. Since tools manipulate formal representa-
tions, we must use a formal software development process from which formal design
information for an artifact can be extracted. We have chosen transformation systems
to realize a formal software process.

It is our thesis that: We can efficiently maintain software generated
transformationally by integrating formal deltas into design histories.

In support of this thesis, we provide definitions and mechanisms to guide instal-
lation of changes to a software artifact using design information captured during its
transformational construction.
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To accomplish this, we must:

e Define a representation for change requests
e Define the nature of the design information we will reuse

e Determine what part of the design information is reusable and how to reuse it
based on a particular change request

e Provide a mechanism for completing the resulting partial design
The problem then becomes:

e How to capture an artifact specification, design, and implementation
e How to exhaustively define possible types of change
e How to define individual changes of each type

e How to integrate each type of change into the specification, design and imple-
mentation

e Defining an architecture combining the change integration components into a
monolithic whole forming the Design Maintenance System.

The resulting solution should have the following properties:

e Always produces a revised, possibly partial, design consistent with the desired
change, to allow repetitive cycling of the process

e Degrades gracefully into a purely constructive procedure when most or all of
the previous design turns out to be unusable

Our intention is to lay the foundation for a Design Maintenance System.

1.6 Research Approach

To construct a Design Maintenance System, we need a basis software construc-
tion process. This process will serve to construct implementations from specifications
when little or no design is present, and will help repair the reusable part of an existing
design. We have chosen transformation systems to act as that basis.

Most of our solution flows indirectly from a formal model given for a transfor-
mation system. There are few such formal models, so we provide one. The notion of a
performance goal turns out to be central to our characterization, and is virtually ab-
sent from other models. We also define a goal-oriented metaprogramming language
for controlling the application of transformations in the form of a language called

TCIL.
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Such a model determines all inputs, outputs and vocabulary used to control
the operation of the transformation system. These definitions provide an exhaustive
means for defining changes as formal maintenance deltas applied to these inputs in
terms of the vocabulary. We define one type of maintenance delta for each possible
input to the transformation system.

We capture design information in the form of a design history (see Figure 1.7).
The actual historical sequence of transformations that convert an abstract program
(satisfying the functional part of the specification) into a concrete implementation are
recorded in a part of the design history called a derivation history, shown as a chain of
circles. This information only shows how the abstract program was implemented, but
it contains no design information in the sense of justifying how the implementation
achieves the (rest of the performance) specification. These justifications are captured
in the form of goal/plan decompositions shown as the tree in the figure. Each square
box represents a performance goal, with the arcs leading downward providing the
decomposition of that goal into subgoals or actions (in the form of applied transfor-
mations) whose composed effect achieves the goal; each subaction is then justifiable as
achieving some higher level effect recorded in the design history. Design histories are
generated effectively by tracing execution of a TCL metaprogram. The goal nodes
also provide indexes back into a TCL metaprogram for use during plan repair. A
partial design history is one in which some of the goal nodes do not have sons, so the
entire performance specification is unsatisfied. The notion of design history is closely
related to that of plan from the AT planning domain [CM85].

Given a maintenance delta, it is our desire to revise the design information,
instantiated as a design history, to be consistent with that delta. We divide this
problem into two parts, not necessarily sequential:

e revising the derivation history to be consistent with the delta

e revising the balance of the design history

A useful property of a derivation history is the commutativity of the many
individual applied transformations: most can be exchanged without affecting the end
result of the derivation history. We can consequently rearrange the derivation history
for our convenience into two parts: a (possibly) reusable part, and a (definitely)
reuseless part. Such rearrangement is controlled by the particular maintenance delta
we desire to apply; transformations which interfere with the maintenance delta are
banished into the reuseless portion. After rearrangement, simple truncation of the
derivation history at the point of the first reuseless transformation retains the reusable
part. We provide a number of procedures for rearranging the derivation history in
the face of particular types of maintenance deltas.

The design history is revised by a pruning process which deletes goal nodes
from the bottom towards the top when subgoals or transformations are discovered to
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be no longer usable (for transformations, this occurs when the derivation history is
truncated). A top-down revision occurs to handle change in performance goals. There
is some interaction between derivation history and design history revision when a bad
transformation is identified; all of its siblings according to the design history are also
bad and must be banished.

Having obtained a partial design history, we repair it by turning it back over to
the transformation system core of the Design Maintenance System. The transforma-
tion system can find ways to finish incomplete goals by using the indices stored with
those goals to locate fragments of the original TCL metaprogram to re-execute. Since
the transformation system can have its attention switched between portions of the
original TCL metaprogram depending on the necessary repairs, execution of the TCL
metaprogram is agenda-oriented rather than sequential as with most metaprogram-
ming languages. This cleanly unifies initial design history construction with design
history repair, so that only a single mechanism is necessary.

These individual components must be combined together to form a complete
Design Maintenance System, which we discuss next.

1.7 Design Maintenance System Overview

In this section, we provide a broad overview of the components of a trans-
formational Design Maintenance System. SADT diagrams representing the major
subsystems are sketched. We gloss over some of the detail because we have not yet
defined our vocabulary; in following chapters, we will detail the procedures more
carefully.

Delta-integration, the top level of a DMS, interfaces (Figure 1.8) to the re-
quirements analysis, validation, and domain engineering processes (Figure 1.5). The
delta-integration process must take the deltas produced by these processes, and revise
the support technology, the design, and the implementation of the desired artifact.
Often, a number of changes to various aspects (specifications, support technologies)
come bundled as a composite delta; ideally, delta-integration would handle the com-
posite delta in parallel rather than dealing with each aspect in a serial fashion. The
feedback arcs should probably be implemented using some kind of database for long
term storage; these databases are initially empty.

Delta integration requires revision of specification and support technology, as
well as revising the design of the end artifact. We can see the composite delta split
into its components and processed in Figure 1.9. Revising specifications and support
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technology is relatively straightforward, as these objects have relatively simple struc-
ture. Constructing a new implementation is accomplished by reusing parts of the
design; this is accomplished by first pruning away those parts that are incompatible
with the changes desired, and then repairing the pruned result. The repair mecha-
nism is intended to complete the partial design and produce the final artifact, given
the revised specification G' and some set of support technologies. It must be robust;
it may be required to accept an empty design. In practice, it may produce a partial
design and no artifact because the specifications are too constraining for the avail-
able support technologies. This is not serious; in fact, we expect this occur naturally
during the process of implementing a large specification. This simply triggers the
generation of a new delta to either shore up the support technologies, or weaken the
specification. Because we do not emphasize actual production of an implementation,
this is within our model.

We use a transformation system to generate and repair partial designs
(Figure 1.10). The transformation system requires a specification G' = (f}, G’ ;) of
an artifact to implement, design history D’ describing partially how it is implemented,
and support technologies (transforms (C'), design methods (M), goal predicates (G),
performance measuring functions (P), etc.) with which to control and carry off the
implementation. In Chapter 3 we will provide definitions of these support technolo-
gies, and we will see how the specification splits into a program part to be transformed
fo and a termination predicate (i,.5;. The transformation system produces a result-
ing program fg: satisfying the specification ', as well as a design consistent with
that implementation. The transformation system may actually change as opposed to
merely augment the partial design in order to complete it; the partial design has had
only the obviously incorrect parts pruned away. The control process for the trans-
formation system must be agenda-oriented if we want repair to mesh naturally with
construction. Chapter 4 describes a metaprogramming language, TCIL, used to gener-
ate the design decisions, and Chapter 5 shows how to capture this design information
as a design history.

Revising the support technology is conceptually straightforward, but has a num-
ber of cases. For each class of support technology used by the design repair process,
that class needs to be updated according to changes defined by a composite delta
Ssupport (Figure 1.11). The composite support technology delta ésupp00¢ is split into
component deltas, one for each support technology class. Each support technology
class is revised by updating a corresponding database. The fact that some support
technologies are built using others induces a consistency requirement on the compo-
nents of a composite support delta. Details defining the support technology deltas
and these revision procedures are provided in Chapter 6.

A program specification has a two part representation (fo, Glest), consisting of
an abstract program and some additional performance constraints, determined by
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the way the transformation system operates, as described in Chapter 3. Revising the
specification consequently requires revising these parts (Figure 1.12). Deltas to per-
formance specifications come in two flavors, with ¢, being a specialized version of the
other, é¢, accounting for the two processes that update the performance specification.
These deltas and their revision procedures are also defined in Chapter 6.

The design pruning process (Figure 1.13) must consider all the aspects of the
composite delta. Roughly, pruning removes those parts of the design history that are
no longer valid by mark and sweep passes. Changes to the support technology make
design decisions (including at least the applied transforms) that depend on those
technologies illegitimate; these choices must be removed from the design history.
Changes to the specification make other design decisions inappropriate; these, too,
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must be removed. We have separate procedures for each type of delta that simply
mark the design decisions invalidated by that delta. A final pass removes all of the
incorrect design choices in one sweep (BATCHBANISH ) for efficiency reasons. Our
preference is to maximize the invalid-marking at any point so that sweeps catch as
much as possible on each pass, and to delay sweeps as long as possible. Details of the
pruning process are spread across Chapters 7 and 8.

1.8 Contributions

The major contributions of this thesis are:

e A formulation of incremental evolution in terms of a design maintenance system

e An architecture for a design maintenance system based on a general transfor-
mation system model

e A formal classification of maintenance types

e The recognition of explicit performance goals as a necessary component in any
design representation usable for a wide variety of maintenance tasks

e Procedures for revising design histories according to maintenance deltas based
on a generalized notion of commutativity in the design space.

The essential value of the thesis is providing theory and building blocks needed
to implement a Design Maintenance System. This is expected to lead to an incre-
mental evolution software construction process in which formal deltas are installed
via tools into implementations.

1.9 Thesis Organization

In this section, we briefly summarize the balance of the thesis. We first provide
a brief overview of the organization in terms of chapters. We provide an in-depth
summary of each chapter in Chapter 2.

A number of ideas and methods are required to implement the notion of
Incremental Evolution. A dependency net of the major concepts is shown in
Figure 1.14. We have chosen to present these concepts in the following order.

Chapter 3 provides a theoretical discussion on the nature of transformation
systems, providing us with the concepts and vocabulary necessary as a prerequisite to
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understand transformational maintenance. The theory describes any transformation
system and so has very broad applicability.

Chapter 4 defines a Transformation Control Language, used to guide the appli-
cation of transformations and provide the raw design information justifying the use
of each transformation. A comparison to other control schemes is provided.

Chapter 5 shows how we can capture the sequence of transformations actually
applied (the derivation history of an artifact), and the justification for applying them
(a design history). This information is what we desire to reuse during transformational
maintenance.

Chapter 6 characterizes transformational maintenance in terms of inputs to a
transformation system, describes the notion of maintenance delta, or change to an
input of a transformation system, gives an exhaustive list of such deltas for our model
of transformation system, and provides representations for each. This allows us to
capture a change as a formal entity.

Chapter 7 shows how we can use commutativity in the design space to provide
basic mechanisms for rearrange a derivation history. Such rearrangements need to
take into account the actual delta being processed. A practical scheme for installing
commonly-occurring deltas is presented, along with a key example (Section 7.4.3).

Chapter 8 show how the design history can be used in conjunction with some of
the delta types to determine useless transformations, and thereby provide direction
to the derivation history rearrangement process.

Chapter 9 compares our Design Maintenance System with other (research sys-
tems) having related purposes or mechanisms, point out strengths and weaknesses of
our approach.

Chapter 10 concludes by analyzing our Design Maintenance System, defines
future research necessary to construct and validate a practical design maintenance
system, and considers the impact of a design maintenance system on software engi-
neering.

Appendices provide a notation index and psuedo-code for a complete system to
integrating functional deltas.



Chapter 2
Thesis Overview

Chapter summary. A brief overview of the chapters in the thesis is provided,
discussing each chapter topic and insights.

This is a rather large thesis. Trying to keep all the threads simultaneously may
be difficult for the reader; it was for the author. We have included this chapter to
provide a summary overview of the topics covered in the rest of the thesis, in the
hopes that if the reader loses the thread, he can return here to pick it up again.

Each section corresponds to a chapter. We provide motivation for the chapter,
a list of insights found in the chapter, and a discussion of the utility of these insights.

2.1 Transformational Implementation

Any mechanical scheme for managing change must be based on some formal
construction process. We have chosen to build our DMS on one of the few truly
formal construction processes known to us: Transformational Implementation. To
ensure that our work is not limited to a single transformation system, or dependent on
idiosyncratic properties of the same, we analyze transformation systems in Chapter 3.
This provides us with vocabulary, concepts and definitions of the components of
virtually any transformation system, as well as pointing out shortcomings of many
existing ones. Such concepts and formal definitions are necessary to:

o define mechanisms for controlling the search through the design space
o define formal design histories

e shape the definition of types and representations of maintenance deltas

e allow us to reason about interactions between the design history and mainte-
nance deltas.

34
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chapter provides the following insights:

Specifications are always predicates (goals (7). Most conventional transforma-
tion systems implicitly define a “specification” as a program fragment to be
optimized, with no performance specifications. Our view unifies “conventional”
specifications and performance specifications.

The idea of a correctness-preserving transform is an instance of the more general
notion of property-preserving transforms.

The essence of a transformation system is its asymmetric treatment of subgoals
Ginvariant and Gl of the entire specification G to provide low-level control
knowledge.

Few transformation systems acknowledge the existence of performance speci-
fications. Without them there is no formal motivation for the transformation
system to apply any transforms!

Absence of performance specifications limits the types of deltas expressible and
therefore eventually processable by tools

The analysis of transformation systems is useful for several reasons:

It is one of very few available. We claim a broader perspective in terms of
performance predicates and the notion of property preservation for ours.

It provides formal definitions for the concepts. These definitions can be used to
classify existing systems.

The notion of locater as a constraint over possible transform bindings. Locaters
will be useful for reasoning “geographically” about interactions of transforma-
tions.

We expect our definitions to be helpful to those that are involved in the use,

analysis or design of transformation systems simply by virtue of being formal. The
concepts are defined in a general way so as to cover quite a wide variety of transfor-
mation systems, making comparisons of such systems simpler. The notion of locater

we think will be an essential idea for any system that stores a derivation history.

2.2 A Transformation Control Language

A transformation system must somehow choose a sequence of transformations

to apply. The control knowledge used to make those choices can come in a variety of
forms. We explore one, TCL, designed to not only provide such control but also to
generate the information needed to justify the final form of the program produced by
the transformation system.
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The ideas presented in this chapter include:

e Using Al planning ideas for metaprogramming.

e A method: a pair consisting of a plan and its purpose. This is used as con-
trol knowledge by using purpose to nonprocedurally locate a plan to apply.
Recording method application provides design justification by connecting ap-
plied transformations back to purpose; this information is needed during design
repair.

e Plan-like structure of methods

o [ocales: computations over binding constraints, providing a mechanism for fo-
cusing the attention of the transformation system

e (lean separation of transformation actions from metaprogram. This allows
reasoning about the transformations independently of the metaprogram, which
is needed for managing derivation histories.

We provide

e The definition of locale, and an analysis of useful operators over locales
e A definition of a plan-like metaprogramming language, TCL

e A demonstration of its utility by modeling control mechanism of other trans-
formation systems, showing that a number of implicit control schemes can be
made explicit

e A comparison of TCL to existing control schemes

TCL is expected to be useful even if one does not want to perform transfor-
mational maintenance. It provides control in a way compatible with our general
characterization of transformation systems. Its structure, based on methods, allows
easy incremental addition of control knowledge. As an intermediate step to efficient
transformational maintenance, it can be used for simple dynamic replay by mere
re-execution.

2.3 Design Histories

While control languages such as TCL technically provide the ability to reim-
plement a changed specification by simply re-running the transformation process, it
is our expectation that this process is expensive because navigation errors made will
require considerable backtracking. Rather than rediscovering the choices made, it
would be better to reuse stored choices. Design histories are the storage mechanism.
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We record histories in two forms: derivation history and design history, with
each design history including a derivation history. The derivation history provides a
record of the actual transforms applied, where they were applied (locaters), and in
what order. The design history provides justification for the applied transformations
by capturing how the TCL metaprogram satisfied the original specification in terms
of a goal /plan tree. The design history can consequently be used for explanation, but
our interest is in using it to provide justifications for transformations proposed for
reuse, and to provide indexes back into the generating TCL metaprogram for repair.
During the design pruning process, we can use such indexes to locate portions of the
TCL metaprogram that generated now-inappropriate transformations. The design
repair process can reuse the purpose of a broken plan, and take advantage of TCL’s
nonprocedural nature to find a replacement method and therefore transformations.
Lastly, a design history tells us which transformations work together to accomplish
some purpose, and is therefore useful in locating the set of transformations made
useless because a member transformation is no longer valid. Design histories are vital
to reuse.

This chapter:

e formally defines a derivation history as a sequence of applied transformations

o defines operations useful on derivation history, such as indexing, splitting, con-
catenation and composition

o defines a design history as tree-structured plan capturing execution of a TCL
metaprogram

We think that both the notion of derivation history and design history will be needed
by any system which attempts to reuse the design choices. We expect the definition of
a derivation history to stay the same in other systems'. The design history should be
usable in explanations about the final program’s structure to any software engineer.
While the actual structure we use depends on TCL, any other transformation system
using structures relating transformations to purpose will likely use something similar
to our design history.

2.4 Maintenance Deltas
Given a formal development process, a formal maintenance process is possible
only if we have formal descriptions of the desired changes: maintenance deltas.

Our view of maintenance is broad: it covers changes to every variable aspect of
the underlying development process (we assume the development mechanism, i.e., the

'With the exception of nonlinear plans as an additional efficiency enhancement.
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transformation system, is itself a constant). It handles changes to implementation
technologies and definitions of performance (support technology deltas) as well as
the conventional changes to a specification (specification deltas). Fach change type
requires procedures specific to that type to integrate a maintenance delta of that type
into the design and the end artifact.

This chapter provides:

e A simple way of defining the set of maintenance deltas for a formal development
process: one maintenance delta type per possible input

Definition of an exhaustive set of delta types for our model of a transformation

system

Formal representations for each type of delta

o Definition of low-level (support technology) delta integration procedures

Our definition of delta types is more useful than that of conventional software engi-
neering (informal) maintenance types in the following ways:

1. Formal definitions prevent confusion about what kind of change is desired

2. We have hope of providing mechanical procedures to handle each type of formal
delta

Our rich model of transformation systems and supply of formal deltas make it ev-
ident that other researchers considering maintenance in a transformational context
must consider more than just the so called evolution deltas currently popular. The
support technology deltas also mesh cleanly with the pragmatic notion of domain
engineering: the idea that one’s implementation technology will evolve along with
one’s understanding of the problem domain.

2.5 Delta Integration into Derivation histories

We wish to install changes defined by maintenance deltas into existing artifacts.
One way to do this efficiently is to reuse the design decisions from a previous trans-
formational implementation. A derivation history contains many of those decisions,
cast as applied transformations. We must consider how to reuse those transforma-
tions in the face of each type of delta. This is a necessary prerequisite to using the
information from the design history.
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What we learn in this chapter:

e reuse = prune then repair
Surprisingly, reuse in transformational maintenance context consists mostly of
identifying and removing obviously reuseless transformations, followed by re-
generation of needed transformations. It is too hard to easily identify truly
reusable transformations.

o The effect of several maintenance deltas on the shape of the design space

e That equivalent sequences of transformations (commutativity) can be used to
rearrange a derivation history, for our convenience, into a likely-reusable part,
and a definitely reuseless part

e maintenance deltas can guide the rearrangement process; this is why transfor-
mational maintenance with deltas is more efficient than simply reimplementing
after applying a delta.

e Retaining a transformation may require changing its locater in a way dependent
on the maintenance delta

These ideas are cast in the form of a number of essential procedures for rearranging
a derivation history:

o defer: Put off application of a transformation until later

e banish: Move a transformation into the reuseless part of the derivation history.
This can additionally serve as a kind of dependency-directed backtracking mech-
anism for the transformation system.

o preserve: Compute impact of a delta on a reusable transformation and vice-
versa

These techniques are shown to preserve the legitimacy of the rearranged deriva-
tion history, so that any truncation (of the reuseless part) leaves a legal derivation
history to be directly reused. The essential procedures are used to build certain delta
integration procedures:

o Ac integration: Revise a derivation history according to a change in the available
set of transforms

e Ay integration: Revise a derivation history according to a change in functional
specification (a frequent type of deltas).

All of these procedures are illustrated with tree transformations. A key example
of all these mechanisms at work is provided in Section 7.4.3. Lastly, since the tech-
niques depend so heavily on commutativity in the design space, we present a number
of empirical arguments as to why we should find that commutativity, including an
experiment expressly conducted to measure it.
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Any system using a derivation history should be able to take advantage of these
methods; we expect Al planners in general to be able to use these techniques to
handle plan repair when faced with a change in world state. We emphasize that
backtracking based on banish is more effective than use of a dependency network
because only essential interference (“different result”) rather than the dependency
nets’ more conservative “uses result”, determines what must be undone.

2.6 Delta Integration into Design Histories

Our original purpose was to maintain software efficiently by reusing design in-
formation. The preceding chapter showed how to use the design information available
in a derivation history to handle certain deltas. However, just because a transforma-
tion from a derivation history initially appears to be reusable does not mean it serves
a useful purpose in solving the revised problem defined by the maintenance delta. We
must re-validate apparently reusable transformations to ensure that they still serve
the purpose for which they were intended. Information about which transformations
serve what purpose is recorded in the design history. We must also prune those parts
of the design history which will be inappropriate for the revised artifact. Finally,
we must repair the pruned design history by completing it, ideally using the same
mechanisms that generate a fresh design history. This chapter is about integrating
deltas in a design history.

The following points are made:
e All the transformations supporting the purpose defined by a method are reuse-

less if any one of them is (contamination)

e So called reusable transformations are only likely-reusable: they may no longer
serve a useful purpose, or they may become contaminated

e Reuse of a design history consists of pruning away those parts which

— are generated by now-invalid support technology

— generated now-reuseless transformations

and repairing the balance.

e Maintenance deltas identify invalid support technology and eventually reuseless
transformations, providing a guide to pruning the design history

e Pruning should optimistically stop where the design history records the presence
of an untried alternative
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Using these ideas, we present theoretical procedures to:

e Further revise a derivation history to handle contaminated transformations
e Prune a design history for many of the identified delta types

e Execute TCL metaprograms by use of an agenda, unifying design history con-
struction and repair

The utility of these insights and mechanisms is in providing the foundations for a
practical Design Maintenance System:

o efficient transformational maintenance
e application to incremental evolution

e application to incremental domain evolution

2.7 Comparison to other Maintenance systems

Having defined the notion of a Design Maintenance System and provided mech-
anisms for supporting it, this chapter compares our methods to those of other existing
production and research systems. Such a comparison is useful in determining how
Design Maintenance System integrates existing ideas or advances new ones.

We primarily find that:

e Few maintenance systems use performance goals or record design histories con-
taining performance goals. without such information, there is no way to validate
the utility of a re-used transformation.

e Many derivation history replay systems block when encountering a problem

e No other derivation history replay systems reorder the sequence of transforma-
tions

o Explicit deltas are rarely used to guide installation of change.

e Nonlinear planners offer a notion of partial state which would be useful in further
research.

To perform our comparison, we must often cast the concepts and methods of
other systems in terms related to those of our broad transformational model. Such
a recasting makes it easier to understand the relations between the systems, and the
state of the field as a whole.
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2.8 Conclusion

We conclude by analyzing the Design Maintenance System.
Interesting ideas that come from the analysis include:

e Essential versus artificial modularity: the true relation of design entities versus
the firewalls installed in conventional software systems

e A perspective on architecture: those design aspects which are expensive to
change (as opposed to those which are coincidentally present, such as friezes on
Greek temples)

Last but not least, this chapter provides:

e An analysis of the problems with our system

e A list of topics for further research
The ultimate point of this work is to provide a solid foundation for the construc-

tion of a software process that supports a continuous model of design, Incremental
FEvolution.

2.9 Summary

A summary of the chapters of the thesis, in terms of content, lessons, and
contributions has been provided.

With the overview completed, we turn our attention to the technical details.



Chapter 3
Transformational Implementation

Chapter summary. We provide definitions of basic concepts on which trans-
formation systems are built, emphasizing performance specifications, left im-
plicit in most transformation systems. The transformational implementation
process is defined and analyzed. We discuss properties of the transformational
design space. Both the definitions and the properties are needed to characterize
and implement transformational maintenance.

Any approach to (semi-)automated software construction requires a formaliza-
tion of the notions of specification, implementation, and some software construction
process. Such a formalization is also a prerequisite to formalizing the notion of main-
tenance.

This chapter provides a formalization of the basic concepts involved in the soft-
ware transformational implementation process, at the level of the artifacts manipu-
lated directly, the mechanisms for manipulating the artifacts, and means for deter-
mining completion of the transformation process.

A number of papers about the theory and practice of particular transformation
systems include [BD77, GB78, Kib78, Fea82, BM84, Nei84a, SKW85, BU86G]. We
describe a general model of transformation systems that emphasizes explicit perfor-
mance specifications, which are implicit in most extant systems!, and compare our
model to some systems in detail.

We also consider aspects of the design space through which the transformation
system must navigate to find a solution. The scale aspect provides us with the
motivation to perform incremental maintenance rather than simply reimplement from
scratch. Structural aspects of the design space will provide us with critical insights

"Mostow notes, [Mos85b]:

Somewhat surprisingly, most of the systems ... leave the goal structure of the
design implicit.

43
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¢ Program(Scheme)s: Objects manipulated by a transformation system
e Performance Measures: functions that determine qualities of programs
o Performance Predicates: tests that programs have certain properties

e Specifications: Descriptions of desired properties of final programs

e States: Program plus cached inferences about program

e Transforms: Program modifiers

¢ Bindings and Locaters: Places on a state and place specifiers

e Transformations: Bound Transforms

e Property-preserving vs. Non-property-preserving transforms

Figure 3.1: Basic Concepts for Transformational Implementation

about how to accomplish such maintenance. In Chapter 4, we will discuss the higher-
level issue of control of navigation through the design space.

3.1 Basic Concepts

Transformation systems are used to “transform” specifications into desired pro-
grams. A very simple model is that an abstract-but-inefficient program, taken as the
specification of a desired computation, is incrementally changed into a concrete and
efficient implementation by repeated application of “correctness-preserving” transfor-
mations [Fea79, pp. 2-10]. The individual transformations replace program fragments
containing inefficient constructs with efficient program fragments that have identical
properties concerning the computed results (thus the term correctness-preserving).

QOur model is a bit more detailed. Before we can discuss the transformation
process, we need to consider the fundamental concepts (Figure 3.1).

We first discuss the artifacts manipulated by transformation systems, called
programs. Arbitrary qualities of programs can be determined by applying appro-
priate performance measures. Performance predicates over programs determine if a
program has some desirable property, and usually are defined in terms of a relation
between a performance measure and some fixed performance value. We then consider
specifications, which ultimately determine which program a transformation system is
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supposed to produce. Specifications used in practical systems can be divided into a
number of performance goals, which determine if a program achieves a desired aspect;
this information is eventually used to control the search for a solution. Performance
goals are defined in terms of performance predicates.

We then move on to define the notions of transform, which cover the notion of
rewrite rules, and transformation, which are applications of the rules. We discuss the
idea of binding, which defines a place in a program, and locaters, which are a specifi-
cation of a place. These ideas are need to define the mechanics of the transformation
process. The characterization of transforms as property-preserving or not turns out
to be a key aid to guiding the transformation system.

A very interesting alternative characterization is provided by [BEH*87, Part I1];
our approach shares the notion of program schemes, and a version of performance
predicates. Another good general survey of transformation systems can be found in

[Fea86].

Practical transformation systems must have the the basic concepts instantiated
before they can be used. This process has been called domain engineering [Ara88] and
is a difficult problem in its own right. We will touch on the role this plays occasionally
in this section.

3.1.1 Program Schemes

The main purpose of a software development process is to produce an exe-
cutable computer program. A transformation system must consequently manipulate
representations? of computer programs as data objects. It is convenient to process
generalizations of computer programs which are identical in all but a few places; we
represent the differing places by parameters® standing for program fragments, and
call a program with zero or more scheme parameters a program scheme:

DEFINITION 3.1: Program Scheme. A syntactic construct representing a class of
programs, allowing parameters where one would expect complete syntactic constructs.
Scheme parameters can be instantiated by substituting other program schemes. O

We use “Tname” to denote program scheme variables.

?The conventional wisdom is that of Agresti [Agr86]:

Transformational implementation is an approach ... to apply a series of trans-
formations that change a specification into a concrete software system.

This implies that a transformation system “transforms a specification” into a program. They trans-
form programs, not specifications.
3Not the typical variables of procedural languages.
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An example program scheme is the PASCAL program fragment containing both
a PASCAL program variable x and a scheme parameter ?m for the body of the loop:

while z do 7m

A program scheme without parameters is just a particular program. This defi-
nition follows that of the CIP project [BEH*87, BMPP89], which suggests that one
should not only use transformation systems to develop programs, but also to develop
program schemes. This potentially allows a transformation system to participate in
the construction of its own transforms, as many transforms have representations which
include a pair of program schemes with shared scheme parameters [EM85, p. 124],

[PS83).

Since our intention is to characterize the transformation process without com-
mitting to representational details, we avoid (as far as possible) defining any particular
structure for program schemes (or any other objects involved in the transformation
process), although we will use some in examples. Instead we depend on the interac-
tions of the objects to define their essential properties, in the style of category theory

[AMT5, Gols4].

To prevent cluttering the text, we shall use the term “program” to mean “pro-
gram scheme”. We use F to denote the set of possible programs, and f; € F to denote
particular instances. The symbol f was chosen because historically each program im-
plicitly represented some desired functionality in transformation systems. The notion
of performance measures in the next section makes it clear that functionality is merely
a derived property of each program. As a mnemonic aid, we suggest you think of fs
as program forms.
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Programs are represented in a variety of ways. We provide some sample program
representations:

e Strings representing a sentential form (string derivable from the goal symbol) of
a chosen grammar [ASU86, p. 168], with named nonterminal instances. For a
simple PASCAL grammar, the following is a program with scheme parameters
?x and 7y for nonterminals TARGET and EXP respectively:

(Ty : TARGET)[?] :== alpha + (72 : EXP);

o Trees representing terms ¢ € Top(X) determined by a signature (S, OP) with
S being a set of sorts, X being a set of parameter names, and inductively
defined by recursive composition of OP, a set of constant and operation symbols,
over terms [EM85, p. 17]. Tree nodes represent operators from OP or scheme
parameters.

e Jungles: forests of acyclic hypergraphs, with nodes and edges labeled with sorts,
operation symbols, and parameter names taken from a signature [HKP87] used
to represent terms with identical substructures.

e Graphs representing algorithmic programs, with nodes representing operators,
program variables, or scheme parameters, and arcs representing connections
between them [Ehr78, vdB81, Sow84]. Edges can reflect “consumes” for value-
producing operators, “transfers-control-to” for control-operations, “defines” for
variable declarations.

e Semantic networks with virtual links (see Section 9.4.7)

3.1.2 Performance Measures

A transformation system must determine if the program it is currently manip-
ulating has some desired property. To do this usually requires two steps: computing
some quality called a performance measure, and then comparing that measure to some
reference value. There are typically many possible aspects of an artifact of interest;
most will require a performance measure.

DEFINITION 3.2: Performance Measure 1. A function p; : F — V; from programs to
a set of performance values V;. O

We denote individual values in V; as vy, or v;; when the performance value
type would be otherwise unclear. We use P to denote the set of possible performance
measures, and P to denote particular sets of performance measures.
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This definition covers such diverse measures as:
implementation technology measures such as programming language:

Planguage * F — Vienguage = {FORTRAN, C, C++, SNOBOL, LISP, PROLOG, - - -}

source line count: py,. : F — Vg = Nat (Natural numbers)

GOTO count: pyorps : F — Vyoros = Nat
McCabe’s cyclomatic complexity numbers:

puecate * F — Vuecare = Nat
and Halsted’s volume/level measures [Fai85, p. 324]:

PHalsted - F - VHalstead = Real

Module coupling and cohesion [Fai85, pp. 148-149]:
Peoupling © F — {content, common, control, stamp, data}

coincidental, logical , temporal, communication
Peohesion F— { . . . . }
sequential , functional , informational
O complexity cost computations [AHUT74, p. 2]:

Peomplexity - F — Vcomplexity = POlynomlals

Denotational program semantics [Sto77, Pag81, AlI86]:
Pmeaning - F — Vmeaning = Functions

Another possible form for V,,canin, are input/output predicates and extensional

relations [MDGS86].
Theories (complete set of facts known about a program [TMS8T7]):

Piheory * F — Vineory = {theories}

Models of programs as algebraic specifications [ST88]:

Pmodels © F — Vmodels = powerset( Algebras)

Termination [BPW80]:

Pterminates - F — Vterminates = {true,falsa unknown}
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o Vague “-ilities” such as
Preadability - F — Vreadability = {10’107 medium? hlgh}

assuming they can be formalized.

In particular, performance measures are intended to cover those properties which
are a consequence of the particular form of the program rather than its derivation.
Pidgeon [Pid90] characterizes similar measures as “observation channels”, but also
allows observations on resources consumed during development.

Functionality (pmeaning) is commonly assumed to be the aspect intended by
a program. However, our perspective is that a program has multiple measurable
aspects, of which functionality is merely an arbitrary choice.*

Performance measures are not always easy to compute. In some cases, ap-
proximations will do. For computational complexity, determining the actual cost
can be very hard to do in general, but one can build conservative estimators as is
done by MEDUSA [McC88]. Sometimes, however, we can actually finesse comput-
ing a performance value entirely (we will see later that the non-symmetric nature of
transformation systems allows us to get away with this). When treating algebraic
specifications as programs, one would not ever want to actually compute the set of
algebras which are models for a particular algebraic specification [ST88], but one does
want to reason about that set, and so the notion p,,.4.5s is still useful.

Reasoning about performance values is aided by an abstract notion of perfor-
mance subsumption: the intuitive idea is that some performance values are at least
as good as others. For every set of performance values V;, we assume the existence
of a (possibly trivial) binary subsumption relation, in which every value subsumes
itself and possibly some other values. We will use this later to define a class of
property-preserving transforms.

DEFINITION 3.3: Subsumption. A preordered relation =, C V; x V;. If x =; y, we say
that = subsumes y. a

Many subsumption relations are actually partial® orders, although we have little need
of that fact.

4This perspective is given strength by an unsolved problem in secure operating systems: pre-
venting covert signaling channels (example: a supposedly trustworthy Trojan program leaking con-
fidential information as a bit stream by changing the page fault rate to signal ones versus zeros to a
detection device outside the system). From the point of view of the spy, the program’s functionality
i1s to leak bits, not to perform the service asked by the application. This 1s simply a instance of
choice of an unusual performance measure as “functionality”.

SPreordered: Vz,y,z: 2 > 2, and (z > y) A(y = 2) D (z > z). A partial order also requires that
(x=yANy=z)Dx=y.
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Likely examples of subsumption relations are:

Viioe: the complete standard ordering < over NAT defining vy =, v9 = v1 <
V2.

Viohesion: degree of cohesion [Fai85, p. 149]:
informational = functional = sequential
communication = temporal = logical = coincidental
Viomplesity: asymptotic polynomial domination
O(1) < O(n) < O(nlogn) < O(n*) < O(2")
defines

O(1> tcomplem’ty O(”) tcomplem’ty O(n 10% n) tcomplem’ty O(n2> tcomplem’ty O(2n>

Vienguage: language subsetting:
C tlanguage C++

A program is surely in C'++ if it is in C'; there is no relation between ' and

PROLOG.

Vienguage: use of language in production software development environments:
FORTRAN tproduction—om’ented C tproduction—om’ented PROLOG

and

C tproduction—om’ented FORTRAN

We interpret this as “FORTRAN is just as production-oriented as C” and vice-
versa, with both being more production-oriented than PROLOG. Since it is
obvious that FORTRAN # C, ¥ production—oriented 18 only a preorder.

Vieaning: function generalization:

[ Zmeaning 9§ <= Va: defined(g(x)) D defined(f(x)) A g(z) = f(x)

i.e., f computes everything that g computes, and perhaps something else be-
sides.

Viheory: theory inclusion:

Ptheory (fl) ttheory Ptheory (f2) — Ptheory (fl) 2 Ptheory (f2)

This is the notion of implementation defined by [TMS8T].
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o V. . .i.1s: model subsets:

pmodela*(fl) tmodels pmodela*(f?) — pmodek(fl) g pmodela*(f?)
This is the notion of implementation defined by [STS88].

o Viudapitiny: “more readable”:

hlgh treadability medium treadability low

Broy [BPWS80] argues for the utility of program relations constrained to be pre-
orders, and provides quite an interesting list of possible relations, including some for
nondeterministic programs. We emphasize preorders on the more primitive notion of
performance measures because of their value as generators of such program relations.

3.1.3 Performance Predicates

Performance predicates verify that a program has a desired property (say, com-
putes the desired result by virtue of denoting a particular function), rather than
determining some performance measure.

DEFINITION 3.4: Performance Predicate. A predicate GG; C F over programs. a

The symbol GG was chosen in anticipation of using performance predicates as goals in
the transformation process. We use G to represent the set of possible performance
predicates, and ¢; to represent particular primitive predicates. We use (G to represent
predicates when we know little about any structure they might have, or when they
are explicitly composed from primitive predicates, such as a conjunction. We will
sometimes treat conjunctive predicates as a sets and use set notation to manipulate
such predicates; e.g., we will write g e Gt G=...AgA....

Performance predicates are not given extensionally, but can be supplied as char-
acteristic functions ; : F — Boolean or specializations. A rather trivial example
is Grorrran(f), which is true if f is written in FORTRAN; another example, for
structured programmers, is G,,,_GoT0s-

Performance predicates (5; are often definable terms of performance measures:
G : (F —V;) — Boolean = G;(f) = ¢:(p;([f))

We might define Gomcoros(f) = Gis—zero(PGoTO=count (f)). In fact, we can often
encode a performance predicate as a relation between a performance value computed
by some p; and an explicit desired performance value constant, v. € V;:

G; : (F —V;) xV; — Boolean = G;(f) = g:(p;(f), ve)

An example i8 G fis—in—one—page (f) = psioc(f) < 66; our FORTRAN tester becomes
GrorTRAN () = Planguage (f) = FORTRAN.
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For a performance predicate G defined in terms of a relation between a per-
formance measure p; and a desired constant v. € V;, the relation ¢ is often the
subsumption relation >;, as with Gpus_in—one—page- A more interesting case is
Grrr(f) = pmeaning(f) = vppr, which says a program f is an FFT program if it
computes FFTs, and perhaps something else besides. We shall have use for perfor-
mance predicates based on subsumption relations.

In analyzing a number of algorithm syntheses, Steier [SA89, 104] found that
most 'nonfunctional’” (i.e., performance) goals were not explicitly represented, al-
though they invariably drove the synthesis process. He claims that we do not know
how to express useful performance goals yet, and that further research is required to
determine this. We make no claim that our characterization completely solves the
problem; we suggest that one must start somewhere with an explicit representation,
and our characterization seems like an obvious first choice. We obviously have not
determined which performance measures or goals are useful.

3.1.4 Specifications

A software development process must convert a vague notion of a customer ideal
into a running computer program (system). There are, conceptually, two major steps
to this process:

e Conversion of “vague notions” into concrete goals.

e Construction of a program that achieves those goals.

The process of converting such “vague notions” into concrete goals is generally
called requirements analysis [Pre87, Lei87, Lei88] and is an extremely difficult problem
in its own right. Part of the difficulty is in acquiring the proper vocabulary in which
to state the goals, and has been pursued to some extent by others [Nei80, Ara88]
under the name domain analysis. Another problem is the conversion of a customer’s
desires into a description using a predefined vocabulary and validating that conversion
[Fic87, RW88, Lei88]. Yet another difficulty is encoding a goal achievable with the
implementation technologies at hand; Arango [Ara88] outlines a domain engineering
methodology that defines vocabularies for implementable solutions using a set of
reusable components.

As the point of automatic programming is to convert desires into programs,
a necessary step is to acquire a fully formal statement of the requirements, on the
assumption that automatic programming cannot occur with informal descriptions.
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For the purpose of transformational implementation, (and to clarify our view of
what the terminology of traditional SE should be), we define:

DEFINITION 3.5: Requirements. An informal statement of the goals to be achieved
by an artifact. a

and we define:

DEFINITION 3.6: Specification. A formal statement of the goals to be achieved: a
predicate C F. O

Specifications are usually defined intensionally with performance predicates over
programs.

DEFINITION 3.7: Performance goal. Any performance predicate used in a specifica-
tion. O

We note that the goals for an artifact may cover not only its functionality, but
also its form and properties derivable from the form. Thus our notion of specification
covers not only functionality of programs in terms of input and outputs, but also
what is conventionally termed performance, such as space, and time, as well as less
conventional properties such as target language, degree of module cohesion, or models.

The problem of acquiring the requirements, and maintaining traceability from
requirements to specifications is important, but beyond the scope of this thesis.

A traditional SE definition of specification emphasizes that the specification de-
scribe what is desired, rather than how the final artifact should work [Fai85, p. 88].
This is valuable in the sense that it decouples possible implementations from charac-
terizations of what are valid solutions, leaving the implementors as much freedom as
possible. In this view, “how” is essentially an executable program.

We do not see specifications as necessarily what. A formal specification may,
in fact, insist on the use of particular programs for accomplishing certain aspects of
a desired computation (probably requiring a G.ppiains : F — boolean in order to
state it), without making it any less of a specification®. This view of specification is
consistent with very high level specifications such as predicate calculus with sets, and
very low level specifications such as state machines and procedures, depending on the
particular specification formalism used.

We explicitly avoid the notion of process specifications: constraints over re-
sources consumed during the construction (or modification) of an artifact, such as
CPU-time (especially that expended to compute performance or other process mea-
sures/predicates), man-hours, dollars, LISP-machines, number of transformations ap-
plied, etc. We do this to restrict the scope of the research to manageable size.

SFurther discussion of specifications as programs and programs as specifications can be found in

[TM87].
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3.1.5 Specifications defined by multiple Performance Goals

The extensional characterization of a specification (as a subset GG C F) is not
appropriate for practical use, because it is impractical to construct. Given various
domains of discourse 7 for describing relevant aspects of a desired artifact, a single
monolithic predicate ’specification’ is likely to be expressed as the conjunction of a
number of sub-predicates (&; each expressing conditions for a particular performance
aspect 2:

specification = /\ G;

=1

Typically, one performance goal will constrain what is traditionally termed the
functionality (pmeaning ); this term specifies what the ultimate program f is to supposed
to compute (as opposed to how “well” it does it), and is the goal traditionally given
primary importance. The remaining goals specify “lesser” performance properties of
the implemented program. Functionality is emphasized over other performance goals
simply because, in practice, most customers prefer non-functionality-performance de-
graded programs over functionality degraded programs. We observe that tradeoffs do
exist, and functionality is sometimes traded away to achieve better performance on
a lesser functionality; typical is the implicit acceptance of bounded-size integers in C
programs due to their efficiency in widely available machines with fixed word sizes.
Note that the specification is stated in terms of the syntactic structure of the ultimate
program f; this allows us to extract function and other performance properties by
inspecting what f actually does.
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Specification Styles

In practice, some representation of the specification must be provided to a trans-
formation system. Assuming a conjunctive specification, what is really required are
representations for the individual performance goals. We see several practical styles
of representing such individual goals, possibly mixed in any one conjunctive specifi-
cation:

o direct specifications, providing G; directly

o performance bound specifications, defining G;(f) = pi(f) =; vi; in terms of a
“specification” (p;,v; ;). The value v; ; is called a performance bound.

o indirect specifications, defining G;(f) = pi(f) =i pi(fo) in terms of a “specifica-
tion” (pi, fo)

o base specifications, defining Giuse(f) = Prase(f) Zhase Prase(fo) in terms of a
“base specification” program f,. Which performance measure py,,. is used is
a constant for each transformation system; obviously a transformation system
can have at most a single base specification in a conjunctive specification. Such
specifications are conventionally known as functional specifications because of
the frequent additional assumption that pyuse = Preaning- This is, unfortunately,
the conventional meaning of specification accepted in the transformational com-
munity.

We call a specification containing mixed styles a mized specification and write it as a
tuple containing style instances as elements, so (fo, v, g;) is a specification containing
a base specification fy, a performance bound v;, and a direct specification g;.



56 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

Direct specification is just that; the system analyst must encode his desired
performance goals directly in some predicate-constructing language understood by
the transformation system, or perhaps select a performance goal from a list built into
the transformation system (such as the frequently built-in, very complicated predicate
Gl optimizedsomewhat )- We are not very interested in the structure of such a predicate-
constructing language for this thesis, as the special cases that are interesting to us are
covered by the other specification styles. A simple example of such a language would
allow the vocabulary we have defined so far, i.e., allow references to performance
measuring functions, performance values, and various relations between them. An
example direct specification might then be represented as:

Pmeaning (f) tmeam’n‘q Umeaning , FFT

AP eomplezity (f) 7= complezity O(inputsize(f) log inputsize([))
APstoc(f) = s10c 1000

/\planguage (f) tlanguage LISP

/\preadability ~ readability medium

This would describe a program that computed a particular function v,eaning Frr (s2Y,
a Fast Fourier Transform), had O(nlogn) running time or better, was at most 1000
source lines in size, was coded in LISP or some subset of LISP, and was anywhere
from moderately to highly readable.

Performance bound specifications take advantage of the fact that many perfor-
mance goals are simply upper bounds on acceptability of some performance measure;
it is sufficient to simply supply the upper bound, as the rest of the predicate is styl-
ized, and can be generated automatically. A common shorthand for specifications of
this form is simply a list of performance value constants v; ; € V; implicitly defining
the specification:

/\pi(f) i Vi
The preceding specification is then written simply as:
(Vmeaning FFT, 1 10g 1, 1000, LISP, medium)

We will see variations of this type of specification when we attempt to change the
(non-"functional”) performance of an existing artifact.

Indirect specifications derive a performance bound specification from a supplied
pair {p;, fo). This can occur in practice when an existing implementation fos is
satisfactory for some performance aspect p;, but not another, and the engineering
organization wishes a new artifact at least as good as the old; thus (p;, fo3) as an
indirect specification. Another good reason for using indirect specifications is that v =
pi( fo) may be difficult to represent, especially if V; is constructed in a very general way,
whereas fo may be encoded in a specialized problem domain language suitable for the



3.1. BASIC CONCEPTS 57

job at hand”. This is one of the essential idea behind the Draco paradigm [Nei84a)], and
Draco specifications are in fact precisely such pairs (paomainmeaning s fadomaininstance)- The
complications are then effectively hidden in p; and fall on the domain engineer rather
than the specifier, at the price of having the specifier learn a specialized language,
and mentioning p; along with his program.

Base specifications occur not only for the same reasons as indirect specifications,
but also for a practical reason that we outline in more detail in Section 3.2.2: the need
for a transformation system to start with a program. Most often pjusc = Prmeaning 18 as-
sumed because of its complexity, and the specification fy, often an instance of a wide
spectrum language, is called a functional specification. More specialized transforma-
tion systems such as TAMPR [BM84], accepting functional LISP, and Belkhouche’s
abstract-data-type implementor [BU86] also allow functional specifications with as-
sumed P eaning -

Wide spectrum languages with predicates and set notations tend to make it easy
to confuse a direct specification with a program. Confusing the problem description
with the actual specification is consequently common. Example: any procedural
program denotes some function. The function is what the transformation system is
to implement; it does so by manipulating the program.

We see that specifications for practical transformation systems are always per-
formance goals, albeit in various disguises.

“Traditional transformation systems with wide spectrum languages [SKW85, Bal85a, BMPP89],
fit this characterization if we simply treat the wide-spectrum language as a domain language. It
is interesting to note that Smith [Smi89] describes the specification acquisition process for a wide-
spectrum-language-based transformation system as first requiring definitions of appropriate formal
terminology for the problem, before specifying the problem itself; the difference is thus one of make-
domain-now versus use-pre-existing domain.
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3.1.6 Design States

In practical situations, the transformation system will have a program f;, and
a set of specific consequences (); = {¢; ;} inferred and cached about that particular
program scheme. Caching is needed to avoid repeated re-computation of the same
results. Typical consequences may be:

e data flow analyses
e value range restrictions induced by context

e estimated execution frequencies

Such consequences can be defined as performance measures over programs, but are
usually not used in goal predicates.

DEFINITION 3.8: Design State. A pair s; = (fi, Q;) consisting of a program f; and

aset Q; C{{(p,p(f))) | p€P}U{{g,9(f)) | g € G} of cached conclusions drawn
about f;. O

We use S to represent the set of possible design states, with s representing individual
states. We extend the definition of performance measures p and performance predi-
cates ¢ to allow application to states, by applying them to the program component
of a state, as follows:

VpeP,s=(f,Q) Dpls) =p(f)
VgeG,s=(f,Q)Dyls) = g(f)

Practical versions of performance measures and predicates may take advantage of the
cached facts () to speed up the computations.

An instance of what we call design states is the representation scheme dubbed
“webs” by [MSNTS88]. This scheme captures both an abstract syntax tree for a
program, and also captures used and ref data flow analysis results as labeled links
between nodes in the abstract syntax tree.

Pidgeon [Pid90] proposes that design states include not only a program, but also
the desired specification (&, measures of consumed resources, as well as the definitions
of the performance predicates themselves. All this information was necessary to model
rationality of the transforming agent, even in the face of learning. Our states are much
simpler because we do not deal with resource management, and our specifications are
static during the course of implementation.
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3.1.7 Transforms, Bindings, Locaters and Transformations

Intuitively, a transform is simply some formal modification to be applied to a
program. We extend the notion to transforms applied to states composed of programs
and consequences; this allows many consequence-generation rules to be defined as
transforms (as is done for webs). Transforms often can be applied to several places
in a state, and so we have a need of a mechanism, traditionally called a binding, to
specify precisely where and how a transform “matches” to the state. Bindings are
always dependent on the transform and the state in which it is applied.

DEFINITION 3.9: Transform. A two argument partial function:
t:8 X bindings(t,s) — S
which maps state (programs) via bindings to new states (programs). O

The set of possible transforms is denoted 7. Individual members t; € T are dis-
tinguished by subscripts. Sets of transforms are denoted T. We use B to denote
the set of all possible bindings of all possible transforms to all possible states, and
understand that application of a particular transform requires a binding appropriate
to that transform and the state to which it is being applied.

Since a binding must specify some sort of connection to the state, and we wish
eventually to record transitions between states (s1, s3) caused by applications of trans-
forms without reference to the actual state, we introduce the notion of a locater as a
kind of state-relative pointing device. Unlike bindings, a locater value is independent
of any transform or any state, but acts as a constraint on bindings when used for any
particular transform on a state.

DEFINITION 3.10: Locater. A constraint on bindings:
(:8 xT — powerset(B)
O

We denote the set of possible locater values by £, with individual members ¢ € L. For
the purposes of this thesis, one can think of locaters as specifying a place in a state
according to some “geometry” dependent on the state representation, but in general
they are just simply constraints®. Finding a suitable set of locaters for various state
representations may be a difficult problem which we ignore for this thesis (but see
the definition of path, below, for a practical locater for states represented by trees).

8Tf one considers that transforms might be parameterized, the locater also includes constraints
on the parameters.
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Most transformation systems contain a pattern matcher to decide precisely how
a transform matches a state; since a locater may allow a transform to match a state
in more than one way, this is the set-valued total function:

match : T x & X L — powerset(B)

The pattern matcher is used by a transform applier (partial function) to apply
transforms to states given locaters:

apply : T xS x L — S

The value of this function is well-defined only when a unique binding is chosen by the
matcher:

defined (apply(t, s, 0)) = match(t,s, () = {b},b € B

We will find it useful, for transformational maintenance, to capture the potential
application of a transform at a specified location. We call this potential application
a transformation. The intuitive distinction between transform and transformation is
the same as the distinction between the Al notion of operator and operation.

DEFINITION 3.11: Transformation. A pair {t,{) with t € T and ( € L, denoted #'.
O

We define the notation #*(s) = apply(t, s, ). We use the notation X' to mean the set
of possible transformations 7 x £, with = representing individual transformations.

Often a transform is represented by some concrete object r from an arbitrary
representation set R, and a general transform-constructing mechanism @ : R — 7
embedded in the transformation system is used to construct the actual transform
from its representation when it is applied. We abuse the notation and write t,,,,. or
t, to stand for some O(r,ume ), O €ven 1.y, itself if we have a specific transform in
mind. We will also write ¢ : & x £L — § when defining a particular transform, the
states it manipulates, and the form of the locaters.
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Examples of transforms, transformations, and locaters

To show the generality of the definitions, we present some example transforms
and locaters, followed by discussion of a variety of representations used in systems
that we would call transformation systems.

The string production with nonterminals:
t AbeA=—scap : strings x (Nat — Nat) — strings

The subscript on t is a representation in this example. The symbol = is read as
“transforms to”. A state in this case is a particular string. A locater is a map from
origin-one indices of symbols in a string to be rewritten to the indices of the symbol
in the lefthand pattern side of the production, indicating which string symbols match
which pattern symbol; string symbols not matching the production are mapped to a
fixed value, say, zero. As an example, the locater

leg={1—-0,2—-13—-14—-25—-3,6—->1,7T—1,8—0}

ensures
<« b <« b
abed=scap(“bz2bcz2q" 1) = “bezzbg

The tree transform:
tdistribute—multiply : Tree x Path — Tree
with its representation being the tree rewrite:
T distribute—multiply = Ta * (?b + ?C) = Ta*xTh+Tax7c
where states consist of expression trees.

Locaters for tree transforms are paths, a sequence of integers ¢ selecting succes-
sive one-origin subtrees [BEH'87] to select the point of proposed application of the
transform, expressed as a sequence (i1, 72, -).
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Figure 3.2: A tree program and some locaters

As an example,
tdistribute—multiply (ZL’ * (?J + Z) - Sl?l(] * (k + 1)7 <27 1>) =T % (y + Z) - Sl?l(] * k —I_] * l)
Figure 3.2 shows the program before transformation and the locater used.

We shall use tree transforms in other examples later. When we define a tree
transform and specify a locater simultaneously, we write the transform representation
followed by a locater value:

(treepattern = treereplacement) Q(path)
We typically drop the outer parentheses:

Tax (7b+7¢) = Ta*x b+ Ta*x 7cQ(2,1)
or, if we use a known tree transform,

tdistribute— multiply Q <27 1>
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A conditional tree rewrite:
tusetess—wrinE - (Eqn, Facts) x (Path, Nat) — (Eqn, Facts)
with its representation being:
while ?x do 7y = skip if Tz = false

States consist of a directed acyclic graph representation of a program coupled with
a fact database resulting from symbolic execution. The locater consists of a pair,
consisting of a Path as defined in the last example, and an index into a fact database
specifying which fact justifies the conditional in the rewrite.

The theory morphism.:
tsiack—to—r1sp - Term X Any — Term
represented by
{top = car, pop = cdr, push = cons, emplty = nil}

which maps states consisting of a term from a simple stack algebra to a term in an
algebra defining a version of LISP, by mapping the individual operations in the stack
algebra to operations in the LISP algebra. In this case, a locater is unnecessary, as
the transform is applied to the entire state:

tstack—to—r1sp (top(push(x, empty))) = (edr(cons(x, nil)))

LALR parser generators:
LLALR—parser—generator - (Domain, Term) x Any — (Domain, Term)

which maps BNF-style syntax equations into parser tables. The Domain is a tag
indicating to a potential p,,caning how to interpret the particular term. The locaters
in this case are also ignored.

Discussion: Having seen a few examples, we now describe a range of schemes used
for transforms.

A typical representation for a transform is a tree-to-tree rewrite [SHFNT6,
Kib78, Nei84a], with pattern variables used as scheme parameters. This choice is com-
mon apparently because many programming languages are easily parsed into abstract
syntax trees, encouraging use of such abstract syntax trees as specific representations
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for programs. Often such rewrites are augmented with an applicability condition to
form conditional rewrites [CHT81, Rea86, Hec88, BMPP89]. The combination of a
tree-rewriting mechanism with a particular tree-to-tree rewrite and locater instance
form the actual map from programs to programs. The representation for transforms
is generally compatible with the representation method used to encode the programs.
Graph-to-graph transforms have been used [Nag78, Ehr78, vdB81, Sow84, YNTS86,
Wil87, YNTL88, PP89] because of the ability of graphs to syntactically express se-
mantic relations poorly expressed by trees, such as symbol definitions, control flow
graphs and shared entities. More specialized directed acyclic graph-rewriting systems
[HKPS87] have been proposed to gain the advantage of shared entities without the
pattern-matching costs necessary for full graph matching. String-to-string transforms
are theoretically useful [Pos43] but don’t seem to be used much for transformation
systems, probably because tree rewriting is almost as easy to implement and is more
natural for expressions.

In practice, the representations of values for locaters are, like the transforms,
usually dependent on the representation structure of the programs. For tree-to-tree
rewrites, locaters can be paths, as defined earlier in the examples. Such locaters can
be used to generate bindings of values to pattern variables; the relation between nodes
of the pattern tree to nodes in the subtree being revised is determined uniquely by a
path. For graph transforms, bindings can be specified by an injective map from nodes
of the pattern graph to the program graph [Ehr78]. Locaters for graph transforms
are problematical at this time, but a sequence of graph patterns to select successively
smaller subgraphs may work.

There are classes of transforms that affect the entire state. While not usu-
ally found in conventional transformation systems, parser generators (such as LALR
parser generators like YACC [Joh80]) constitute transforms by our definition, which
map BNF-like programs into parsing tables, as well as data-flow analyses [ASUS6]
which simply augment the set of cached consequences. So, too, do theory morphisms,
useful for mapping terms (a particular representation for programs) defined in one
algebra into terms defined in another algebra. For such transforms, the corresponding
transformations have effectively trivial locaters.

Although our simple characterizations of transform, binding, locater and trans-
formation are satisfactory for this thesis, these notions are considerably more complex,
especially if one is interested in the actual mechanics of rewriting and how those me-
chanics are related to the representation of the programs being transformed. Some
initial investigation of the foundations of rewriting is being pursued by [Sri91].
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3.1.8 Property-preserving versus
Non-property-preserving transforms

Transformation systems usually operate by applying so-called “correctness-
preserving transforms”. Using this terminology, transformational maintenance is
often initiated by applying non-correctness-preserving transforms; more on this in

Chapter 6. Consequently we shall have need for definitions for both.

Partsch [PS83] generalizes the notion of “correctness-preserving” by defining a
transform to be correct if a certain, arbitrary [BPPWS80], transitive semantic relation'®
holds between its input and output, i.e., there is a fixed, pre-determined relation
p(f,t'(f)). Bauer defines a (correct) transform to be an inference rule [BEH*87,
pp- 30-31] concluding such a semantic relation. As these definitions of correctness-
preserving are imprecise with respect to what a correctness-preserving transform is
correct, we prefer instead to define property-preserving transforms in terms of pre-
served properties as follows:

DEFINITION 3.12: G-preserving transform c. Relative to a performance predicate
(;, any transform ¢ € 7 with the property:

Vs, (= defined(c'(s)) D (Gi(s) D Gi(c'(s)))

The set of property-preserving transforms with respect to (; is denoted'! C;. O

9An interesting difficulty with this formulation is the notion of approzimate transforms. Useful
transformation systems have been built with transforms that are not provably correct, but are in-
tuitively close to correct; this is analogous to floating point arithmetic versus the mathematical
notion of real arithmetic. Kant [DKMW89] describes a system that implements finite differencing
programs for solving partial differential equations by replacing continuous functions with approxi-
mations. Perhaps such transforms can be treated as merely missing the additional conditions which
make them correct, although such conditions may be difficult to define in practice.

1°Qur performance predicates g are only defined on a single program, not a pair of programs.

1We chose the letter ¢ to stand for property-preserving transforms because of their historical
association with the term correciness-preserving transforms.
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If G;; = pi(s) = v, then a transform ¢ is G, j-preserving if:

Vs, 0 : defined(c'(s)) D ((pi(s) =i v;) D (pilc’(s)) =i v;))

One way to ensure this is to require the transform ¢ to be monotonic in p;:

DEFINITION 3.13: p;-monotonic transform t. Relative to a performance measure p;,
any transform ¢ € 7 with the property:

Vs, [ deﬁned(tg(s)) D) pi(tf(s)) =i pi(s)

Each p;-monotonic transform ¢ is G ;-preserving for all j.
DEFINITION 3.14: p;-preserving transform c. Any p;-monotonic transform c. a

Using this terminology, the conventional definition of correctness-preserving transform
1s SIMPLY Puyecaning-preserving.

A significant advantage obtained from the notion of p;-preserving is the iden-
tification of the set of C;. If p; is a frequently used performance measure, such as
1 = meaning or 1+ = complexity, sets of transforms that preserve those properties can
be identified in advance of transformational implementation.

The definition of monotonicity is motivated by the definition of refinement pro-
vided by Sanella [ST88], in which an algebra specification f, is defined to be an
implementation of algebra specification f; if models(f,) C models(f;). If one is im-
plementing an algebra-specification transformationally, then an algebra-specification
is a program, and p,,,4e1s 18 a performance measure by our definition. The “C” idea
provided the inspiration for subsumption!?. This formulation covers neatly the notion
of implementation of [TMS87], in which implementations are super-theories.

Defining property-preserving transforms automatically determines a comple-
mentary set of non-property-preserving transforms:

DEFINITION 3.15: Non-property-preserving transform n. Any n € (T —C;). O

Figure 3.3 provides an overview of the relation between various basic aspects of
a transformation system.

With the basic concepts defined, we are now ready to consider transformation
systems as a whole.

12Thanks to Y. V. Srinivas for a hint along these lines.
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binding b,
s; = ([ Qj)

determined by locater {

program f;
---while z

do ---

c =

while 7z do 7m —> skip
if 7z = false

Siv1 = (fi41.Qj+1)

program f41

. ) Skip )
pcomplem'ty(fj) = O(nz)

Transformational Invariant
Ginvariant(f) =
pmeaning(f) tmeam’ng pmeaning(fO)

fo = original program
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Figure 3.3: Notational overview for transformations mapping states
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Software Engineer

Software Implemented
Specification G — = Development ——»  Software
System fa

Figure 3.4: Model of development symmetric with respect to specification ¢

3.2 Model of a Transformation system

In this section we provide a model of transformation systems using the basic
concepts developed. We first characterize general software development systems to
provide a reference used to highlight a characteristic feature of transformation sys-
tems. Our model of a transformation system is then described and analyzed. We
discuss how a practical asymmetry in its operation leads to use of particular speci-
fication styles. We close with a comparison of the model to existing transformation
systems.

3.2.1 Purpose of a Software Development System

A software development system (SDS) (Figure 3.4) is intended to somehow
produce a program meeting its specification, that is, is to find a program f that
satisfies the specification G:

3 G(f)
So we define:

DEFINITION 3.16: Implementation. A program fs that satisfies a specification G.
O
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This characterization does not give any leverage to the software development
process. About all one can do to construct an implementation (find an fs) with this
level of detail is to naively enumerate programs for fi and apply the predicate G until
an one is found that passes. Such a naive SDS treats the usual internal structure of
the specification,

G:Gl/\Gz/\G;),

in a completely symmetric fashion: none of the individual performance goals (&; has
any special status over any other performance goal. Every proposed implementation
fa must be tested against all of the performance goals to ensure that all are satisfied.

The problem of determining how to obtain an implementation efficiently is called
the control problem. We shall discuss this in more detail in Chapter 4, but trans-
formation systems have a basic, low-level control mechanism built in from the start,
which we discuss in the next section.

3.2.2 Actual Transformation system Model

In this section, we describe the purpose and mechanism of a transformation
system.

Transformation systems are software development systems with a sophisticated
approach to generating the implementation. They have a peculiar, but practical,
asymmetry about how they handle the individual performance goals. Such asymmetry
can lead to faster operation of the the software development system; this asymmetry
is precisely what distinguishes a transformation system from a blind enumeration.

A transformation system (Figure 3.5) accepts a specification (consisting of a
program and some performance specifications), and attempts to find a sequence of
transformations to apply to a program representing one aspect of the specification,
such that the transformed program satisfies the balance of the specification. The
transformed program is output as the implemented software.

DEFINITION 3.17: Transformation system. Any mechanism which applies a se-
quence of property-preserving transforms to a given program scheme to find an
implementation'?, a

13We distinguish Synthesis Systems as those which accept only a specification and invent a program
to meet that specification; thus synthesis systems are more ambitious than transformation systems.
It 1s our expectation that they are also much harder to implement, hence our concentration on
transformation systems. Practical tools along these lines may actually end up being hybrids, similar

to REFINE [SKW85] as augmented by KIDS [Smi89).
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Figure 3.5: Model of transformation system

A transformation system may optionally produce the sequence of transforma-
tions used, called a derivation history. This sequence will be of value when attempting
to construct a modified implementation. We defer further discussion of this output
until Chapter 5.

Other inputs used by the transformation system are a set of performance predi-
cates and performance measures, which provide a vocabulary for stating the program
specification and actual functions used to extract qualities of states, and a transforma-
tion library of property-preserving transforms C', indexed by the goals they preserve.
Control knowledge is also needed, but we will discuss that in Chapter 4.

The generation of the transformation sequence is difficult enough so that we
expect a human designer (called the Software FEngineer) to provide assistance to
the transformation system essentially in the form of breaking ties between possible
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choices the transformation system might face. If the grand dream of transformation
systems is achieved and the process is nearly automatic, then human assistance will
be small but nontrivial [Bal85a]; in the meantime, human assistance may provide
the bulk of the direction with the transformation system merely handling clerical
detail [BEHT87, BMPPS89] such as listing choices and applying the transformations
mechanically.

Like any SDS, the problem for a transformation system is to find a program
f such that Guire (f). The specification Gpiire is assumed to be decomposable into
smaller specifications of which we have some knowledge. Frequently G, takes the

form™:

Ci(f) A Ga(f) NGs(f) A~

Each transformation system defines a decomposition of G.,i:

Ginvariant(f) A GT@Sl‘(f) D Gentire (f)

The particular performance goal G.,yariant chosen' is such that an initial approxima-

tion fo of the desired program fg can be divined from the structure of G;,variants
by a mechanism outside the transformation system. This has the nice effect that now
one of the terms, Gnyariant(fo), of the implicant is satisfied; the transformation system
need only find out how to satisfy the rest (obviously, if we have only a single predi-

entire

cate, then the implementation process is complete). The state of the transformation
system is initialized to (so, Ginvariants Grest), where sg = (fo, ) is the initial design
state consisting of the initial program scheme and the empty set of consequences. It
remains for the transformation system to find a way to satisty G, by transforming
80- Ginvariant 18 called the transformation invariant.

For each performance goal (;, there is a set of property-preserving transforms
Ci. The task of the transformation system when in state (so, Ginvariants Girest) 18 t0
choose sequences of members of Ciyyariant With appropriate locaters, ¢, ¢2, - - - ,cf;’“,
such that Gmt(cf;k (cf;k__f (- (cf1 )(s0)))) is true. By applying only members of Cinvariant

the property Gi,uarians cannot be lost!® and therefore need not be continually tested.

14Should a specification be disjunctive, the transformation system can simply treat it as multiple
conjunctive specifications, and an implementation need only be found for one.

15Current transformation systems each have a fixed decomposition method. In principle, there is
no reason why this decomposition cannot be dynamic, but there is little evidence that such an ap-
proach has been tried. Such a dynamic decomposition would provide an additional backtrack point in
case the transformation process failed on the initial decomposition, a luxury present transformation
systems do not have.

'5One could apply some chain of non-property-preserving transforms nq, ns, - - - to s; at any point,
provided that the composition IIn; is property-preserving. In practice this is rarely done, as few such
sequences appear to be interesting; further, if the composition is a property-preserving transform and
interesting, one can expect it to be present in C;. One can expect groups of non-property-preserving
transforms to be applied in transformation systems in which the representational constraints on
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function TransformationSystem(program:s, Predicate:G ippariant,
Predicate:G .5, Transforms:Cinyariant)
returns program
while G (s)=false do
choose c; € Cz’nvam’ant
choose ( € £ suchthat defined(c!(s))
s — ci(s)
end while
return s
end

Figure 3.6: Simple model of transformation system

For a complicated G, pariant, or for large-scale states s, this can be a big computational
savings. This is a key architectural feature of transformation systems: staying on a
plateau of achieved property by only applying property-preserving transforms!”.

Typically, a transformation system will be manipulating a state which implicitly
defines a computation (Gimplicit = Gmeaning.j)s and applying computation-preserving
transforms ¢ € Ciyeaning 10 an attempt to find a state in which the other desired
performance goals, such as the amount of code G, 1000, are achieved. However, it
is perfectly reasonable for the state to initially describe a program which consumes
a desired amount of code space (satisfies Gi,e1000), and apply code-space-preserving
transforms ¢ € Cy,. to see if the desired computation is achieved.

transforms prevent one from directly stating a desired property-preserving transform. An example
of such a system is TT [Bal85a], whose transforms are coded in a language called PADDLE [Wil83],
in which a property-preserving transform is achieved by a series of structural “edits” applied to
the syntax tree representing a program. Such systems should require explicit notions of sequencing
and atomicity of transactions to ensure that all the non-property-preserving transforms are either
applied in the correct order, or not applied, as a group. In PADDLE’s case, the need for atomicity is
not explicitly acknowledged, but is implicitly present due to the execution rules for PADDLE, and
usually indicated by the transform designer by grouping the non-property-preserving transforms
into a single syntactic PADDLE entity like a procedure. In any case, our model does not cover
grouped non-property-preserving transforms; one must assume a corresponding property-preserving
transform.

17Tf one could constrain specifications to a purely conjunctive form, and could easily compute
intersections of sets of property-preserving transforms for different performance measures used by
the performance goals, then one might be able to do true hill climbingin the design space. This would
be accomplished by moving up to each plateau as successive goals were achieved, and constraining
the applicable property-preserving transform set to be the intersection of all property-preserving
transform sets for the remaining goals.
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A transformation system can theoretically switch from using one type of
property-preserving transforms to another, by changing which performance goal is

preserved. Assuming that at step m, for some G; and G,

o the transformation system state is (S, Ginyariants Grest )
L] G] A Glmst D) Ginvariant A Gresh

L Ginvariant(5m> = true and G](5m> = lrue

then the transformation system can change its focus of attention from G, urign: to
G; by changing the state to (s,,,G;,G,,). When the form of G,.;; and G/, ,, are
conjunctions of individual performance predicates, this amounts to swapping a single
predicate from the invariant slot with a predicate in the to-be-achieved slot. Further
transforms must then be chosen from C; rather than Ci,y4riani. The utility of this can
be seen when designing time-critical routines for operating systems; it can be more
efficient to enumerate routines having extremely tight constraints if there are only a
few such routines. No systems familiar to this author change the focus in this manner;
this is not surprising since doing so would require Gpuriant to be explicit, whereas it

almost always implicit.

A complication occurs in practice. The sets C; are not actually available to
the transformation system. Instead, for each set C;, there is an approzimating set of
transformations ;. The transformation system uses C; whenever C; is desired. This
approximation occurs as a consequence of human fallibility in the construction of the
transform set; the supply of transforms is nearly the desired set, but may include
some faulty transforms or be missing some needed transforms. This approximation
requires occasional action be taken to bring the sets (; more in line with their ideal
C;. Similarly, we expect all the reference inputs used by the transformation system
(G;, pi, Vi, =;) to only be near approximations of the truth. Correction of these
approximations is one source of evolutionary pressure.

3.2.3 Partitioning the specification

Now let us consider how the initial partitioning of the specification GG occurs.
Transformation systems must operate on a program, but specifications technically
only come as a set of goal predicates. Somehow an initial program fo must be man-
ufactured.

Such an fy can be obtained by use of a synthesis system. Given a specification
of the form Gyepning A Glrest, transformation systems containing synthesis subsystems
(such as KIDS [Smi89]) use the synthesis subsystem to generate fy from the supplied
G eaning; Glinvariant then becomes the specification Gy ning, and the transformation
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system is started in state ((fi, ), Geaning, Grest), effectively partitioning the specifi-
cation.

However, most existing transformation systems finesse the need to decompose
the initial specification at all, by assuming a particular G}, 400t and requiring the
specifier to supply the mixed specification (fo, Grest). Consistent with the definition
of base specifications, the invariant is defined as:

Ginvariant(f) = Plase (f) t pbaa*e(fO)

in which py.,. need not be made explicit, as Gj,pariant never needs to be evaluated
by the transformation system. This indirectly defines the set of usable transforms to
be the py.s.-preserving transforms; this set can be constructed in advance of seeing
the specification since py,s. 1s a constant for the transformation system. Usually,
Prase 18 defined to be a semantic function like py,euning,. This is characteristic of
systems with both wide-spectrum language approaches [BBG*78] such as REFINE
[Rea86, SKW85], CIP-L [BMPP89], or GIST [Bal85a, Sca86], and domain-specific ap-
proaches like Draco [Nei80, Nei84a]. An apparent advantage for the implementors of
the transformation system is that p,,.uuin, need not be explicitly defined. In practice,
leaving pueaning implicit/informal can make determining property-preserving trans-
forms C,eaming difficult, and for domain-oriented transformation systems, can lead to
semantic earthquakes [Bax86].

3.2.4 Comparison of transformation model to real systems

This model of transformation systems is a synthesis of the best features of a
number of existing systems. CIP [BMPP89] has programs with scheme variables.
LIBRA [Kan81] and MEDUSA [McC88] have explicit performance measures; some
work has been done on an efficiency analyzer for KIDS [Smi89]; MEDUSA allows
only a single performance bound, computation complexity, to be explicitly specified.
All other transformation systems mentioned in this section have implicit performance
goals. A base specification fy is supplied to the TAMPR [BM84], Draco [Nei84a],
LIBRA, TT [Bal85a], CIP, MEDUSA, and REFINE [Rea86, SKW85], CIP-L systems;
the CYPRESS synthesis subsystem [Smi85] of KIDS being the exception, accepting
Glinvariant, and manufacturing fy for processing by REFINE. Every transformation
system considered had sets of property-preserving transforms defined only for the
Phase = Pmeaning 1MPlicit in the programs manipulated.

The practice of supplying only a program as a specification has the dubious
advantage of not requiring any performance properties or performance predicates to
be defined to that transformation system before it is used to apply transformations.
We believe that this absence of performance predicates is a key stumbling block when



3.2. MODEL OF A TRANSFORMATION SYSTEM 75

it comes to providing transformation systems with control mechanisms. In fact, since
extant systems are almost never provided a (., it is hard to understand why any
transformations are applied at all (after all, Gnyarian: 18 satisfied by definition) until
we realize that these systems must have an implicit G5 = Gimpiicie, such as the
REFINE transformational compiler'®. A minor variation is the TT system [Bal85a],
in which G4 1s not implicit in the transformation system itself, but is implicit in the
control supplied to the transformation system in the form of a set of PADDLE [Wil83]
procedures. A third variation is a purely interactive transformation environment such
as CIP [BMPP89], in which G5t = Gicsigner, as the designer looks at intermediate
states, and if he is not satisfied with their performance, directs applications of further
transformations. Lastly, there are hybrid semi-interactive systems such as KIDS
[Smi89], which have G st = Gimpiicit N Gaesigner With the implicit performance goals
being inherited from the underlying transformation system (in this case, the REFINE
compiler). The only advantage to implicit performance specifications is that they need
not be formalized; in the long run, we think this benefit is not as great as the need
to provide control for navigation.

A model of MEDUSA

Our model is probably best exemplified by the MEDUSA system [McC87],
which “synthesizes” routines to solve planar intersection problems from computa-
tional geometry, given complexity constraints. A mixed specification {fo, Vcomplesity )
is provided to MEDUSA. Givariant(f) = Pmeaning([) = DPmeaning(fo) 1 assumed;
Pmeaning 18 Never instantiated or computed, and G .5 is defined as Gepmpierity (f) =
Peomplezity (f) 7 complexity Veomplezity- Jo itself is defined by a single typed scheme vari-
able representing the desired function by being typed (named) for that function; we
will call this a placeholder. Transforms are replacements of placeholders representing
functions by code skeletons implementing those functions; the code skeletons may in
turn contain placeholders. The set of placeholder-to-skeleton maps defines the set of
property-preserving transforms C,,c4nin, Which are Gy yuriani-preserving.

Each MEDUSA transform ¢; is associated with a cost formula for computing
Peomplezity (€i) TrOM Peompierity values for the instantiations of placeholders in ¢;. Starting
with a symbolic complexity v ompiesity 0 for fo, a lower bound estimate on peympiesit, for
any f; can be incrementally maintained by substitution of the cost formula of ¢;_;.
Monotonicity of growth of the lower bound on p,mpiesity as components are refined
occurs as a consequence of the purely functional nature of all of MEDUSA’s programs,

18Unsurprisingly, [SA89, 104] found that most design decisions involved in a number of documented
algorithm syntheses were based on non-functionality properties, what we call performance properties,
and that such performance goals were not explicitly represented
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the absence of any transforms that can simplify away code, and the compositional
nature its transforms.

This monotonic growth allows MEDUSA to cut off an overly expensive imple-
mentation early by using > .,mpiesity- Whenever a proposed cf has the property that
Peomplexity (C:(f1)) % Veomplerity, N0 further property-preserving transforms can lower the
cost, and thus application of ¢! is useless and can be ignored. This is MEDUSA’s main
hueristic, and is quite close to our earlier characterization of stepping up plateaus of
increasing partial specification satisfaction by restricting sets of allowable property-
preserving transforms.

Having defined a model of transformational implementation, we now turn our
attention to properties of the transformational implementation space.

3.3 Properties of the design space

The design space (Figure 3.7) is the set of possible implementations determined
by application of property-preserving transforms to the initial program, assuming the
transformation invariant is held constant. Design states are shown as circles. The
initial state sg = (fo,0) forms the root of the space. Fach arrow represents a partic-
ular transformation from one design state to another; the number of transformations
leaving any particular state is widely variable, depending on the state and on the set
of available property-preserving transforms. We call the average number of transfor-
mations leaving a design state the branching factor. The nodes along the bottom
represent possible implementations (although implementations may be “interior” to
the space), each satisfying a different set of performance goals. The bold arrows
represent a particular derivation history, the string of transformations leading to a
particular implementation satisfying some set of performance goals.

There are several interesting observations about the nature of typical design
spaces:

e The average derivation history is quite long: 10* transformations.
o The design space is (consequently) enormous: 10** states.

e There tend to be cross-links, or multiple paths, to many of the states in the
space; for very small spaces, the number of paths 19 is at least 10.

19Gee the discussion in Chapter 7.
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Figure 3.7: Huge design space with multiple solution paths
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3.3.1 Long chains of transformations are required

Experience suggests that even for moderate size specifications (represented by
moderate size initial programs fy) a large number of transformations are required to
locate an implementation, Figure 3.8:

o Goldberg [Gol89] reports that a very small functional specification for a topo-
logical sort requires roughly 40 transformation “steps” to get an efficient imple-
mentation. The steps are what Lowry [LD89, p. 285] calls “large grained rules”,
which are really metaprograms (packages) of what we define as transforms, so
we think this value is low by an order of magnitude.

e The TAMPR system reportedly used about 10,000 steps to transform a 1300
line functional LISP program to FORTRAN [Boy84].

e Porting the core of the Draco system (roughly 2400 lines of LISP source code)
transformationally from a DEC20 to a VAX [ABFP86] requires roughly 40,000
transformations [Bax87h]. Since both Boyle’s conversion and our porting reim-
plement an already mostly-implemented (procedural specification) system (as
opposed to implementing a really abstract specification) it should be clear that
this number of transformation steps is conservative.

e Barstow [Bar88, Bar89] estimates that he will need to apply 10,000 transforma-
tion steps?® to implement a 500 line specification. The transform application
sequence is specified by a manually-generated script.

e Paulson [Pau87, p. 10] reports on two verification projects: verifying an asso-
ciative memory unit (AMU) and the Viper microprocessor?!. The AMU proof
(control) took 30 part-time man months to develop, occupied 4800 lines of ML,
and required 10.5 hours of computer time to validate. Verification of the Viper
microprocessor required “a million primitive inferences”.

These results are consistent with Wile’s [Wil83] comment that the problem of scale
is one of the most critical to handle.

20Tt is surprising to observe the consistency (same order of magnitude) in the number of transfor-
mation steps required for specs in the multiple-thousand line case. Perhaps there is some property
of the level of specification language, or its distance from an implementation, that leads statistically
to such a result?

21'While verification proofs and transformational implementation do not produce the same results,
both types of tools do considerable numbers of rewrites, so we feel justified to use the statistics here.
Both technologies require reuse of the derivation history to make them practical.
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Who What Specification size Transformations
[Gol89] topological sort < 10 lines REFINE 40 large-grain
[Boy84] TAMPR system 1300 lines functional LISP ~ 10000
[Bax87b] Draco system port 2400 lines abstract LISP ~ 40000

[Bar89] Device control 500 lines ®-lang ~ 10000
[Pau87] assoc mem unit 4800 lines ML 10.5 cpu hours
[Pau87] Viper verification unstated 106 inferences

Figure 3.8: Reported costs on transformational implementation

3.3.2 The design space is enormous

Let us consider Barstow’s ®-NIX system [Bar88, Bar89] as an example. Assume,
with extreme optimism, that an average branching factor of 1.01 was achievable®?.
Given that 10,000 transformations are expected to produce an implementation from
a specification [Bar88], we compute that roughly 1.01'°°%° = 1.6 x 10** possible se-
quences of applications of transformations to the original programs leading to possible
implementations, of which some are acceptable. Clearly, a complete exploration of
this space is impossible. Some means for navigating the space is a necessity.

We discuss navigation and control in Chapter 4.

3.3.3 Multiple paths between connected states

A specification determines a family of possible implementations depending on
individual design decisions (each transformation representing a decision to apply it);
an overly simplistic view is that there is a single path from the initial state to a
particular implementation leading to a tree-like view of the implementation space
[Par76, GB78, KB81]. In practice, however, for each path between a pair of states, it
is likely that there are alternative paths between the same states [SA89] (Figure 3.7).

This multiple-path-to-a-state property is a consequence partly of the algebraic
properties of the transforms, but it is mostly due to the sheer size of the state. The
typically large “diameter” of a state allows pairs of transformations over parts of the
state separated by some distance to trivially commute [Bax88]. As a consequence,

22Tf we use trees to encode states, a better estimate is one transformation per tree node. The
Draco port [Bax87b] had trees with easily 10,000 nodes, so a branching factor of 10,000 would be
far more realistic.
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many times two sequential transformations will “commute”; this tells us that often the
end result does not depend on the exact decision order. An important consequence
is that two accidentally adjacent transformations can almost always be exchanged
without affecting the result. This is an essential property of many search spaces which
we feel has been greatly underrated?®. Note that we have no guarantee of a multiplicity
of paths; just a reasonably high likelihood. Chapter 7 provides a number of different
arguments as to why this should be true for the search spaces of transformational
implementation. We will also see how to use this property to help revise a derivation
history in Chapter 7.

Knowledge of the multiplicity of paths can also help us reduce the apparent size
of the search space by eliminating some obviously redundant paths. An arbitrary
labeling of the transformations can provide a basis for a lexical ordering of paths that
are equivalent under commutation of transformations; only the path with the least
ordering need actually be considered. A search method based on this insight was
implemented and is described in [Bax88].

3.3.4 On the high cost of transformational implementation

If one expects that there are potentially several transformations, representing
different implementation technologies and possible locaters, that can be applied to a
particular state, then the problem of choosing among the transformations arises. With
a fully automated specification-to-code system, the implementation of a specification
is very likely to require a considerable amount of search in order to choose a good path
through the design space from program to the final code (this occurs in the LIBRA
system [Kan79, KB81]). Because of the size of the design space, it is probable that
any such system will visit nodes only within a fixed distance d of the path defined by
the final derivation history followed.?* The area covered by this band is the length of
the band (the actual number of design choices k) times the width of the band (¢ for
branching factor b), or kb?. For k = 10,000 (a moderately complex program), b = 2
and d = 5, with 250 ms. per transformation?®, it would take about 25 hours of CPU
to obtain an implementation this way. Even an order-of-magnitude speedup makes
the machine cost per implementation fairly large. It is perhaps an unavoidable cost to

Z3Parnas [Par76] noted the commutativity of some decisions, but did not make any observations
as to frequency or how that might help one during development or maintenance.

24The Draco port was done in such a way that only one transformation was applicable at any point
(d = 0) in the program (i.e., there were no alternative transformations); no human intervention was
required. The consequence was that while we succeeded in porting the system, the resulting code is
quite “vanilla” (and consequently inefficient) in its flavor.

25The rate of transformation application determined by the Draco porting project, 40000 trans-
formations in about 3 hours on a Sun 3, holding d = 0 to avoid the control problem.
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explore this region for a first implementation, but if it (mostly) replaced a dedicated
designer, we would likely accept it.

Until such choices can be made entirely automatically, we must expect that
human designers will be called upon to make at least some of those choices; Balzer
[Bal85a] makes a convincing argument that we will never be able to entirely auto-
mate the process. If even a small percentage of the transformations require designer
intervention, a valuable resource (the designer’s time) will be consumed during the
implementation process. Fach such intervention requires that a designer be shown the
problem, determine an explanation of its cause, possibly by examination of its con-
text, determine a resolution, and enter the solution (as the application of a property-
preserving transform) into the transformation system, at the cost of some fraction of
an hour for each. The GLITTER system [Fic82, Fic85] was able to automatically
produce 45 out of 50 required transformations; if this is average and scales linearly, we
could expect a designer to be involved in about 10% of the transformations. Assuming,
with good tool support, 10 minutes of designer time per necessary interaction, a typ-
ical string of 10,000 transformations will require 1000 designer interactions, or about
166 hours of concentrated designer time for each fresh reimplementation. Of course,
this time is not all likely to come in a block, so the designer may have to be idle
waiting for the next interaction to occur.

We see that considerable energy is required to acquire an implementation, both
on the part of the machine, and on the part of a participating designer. If we could
build an artifact just once, such costs might in fact be considered extremely rea-
sonable. The pervasive need for maintenance suggests that we will actually need to
repeatedly modify the artifact. The “modify specification and reimplement transfor-
mationally” model of Balzer [Bal85a] would make us pay this price for each imple-
mentation. Even if the machine time were acceptable, the designer would soon grow
tired of the interactions needed for each implementation. If we believe that much of
the implementation does not change, the designer will especially object to handling
the same problems each time.

A solution is to reuse the derivation history (including the transformations cho-
sen by the designer) from a previous implementation to guide the next implemen-
tation. Reusing the derivation history requires we be able to validate its individual
steps, for which we need a design history, or justification, which we shall address in

Chapter 5.
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3.4 Summary

This chapter has provided a formalization of the transformational construction

process. It has defined terminology necessary for the rest of the thesis, and provided

some details about on the nature, size, and costs of the search space, which will be

useful in engineering future transformation systems.

It contributions are:

A general model of the transformation process, emphasizing the role of perfor-
mance predicates, and explicitly defining the transformation system inputs and
outputs

a classification of specifications in terms of how they interpreted to produce goal
predicates

The notion of an explicit locater as a pointing device, or more generally, as a
constraint on transform application.

The careful distinction of transform and transformation, based on the idea of
locaters.
A survey of existing transformational implementation costs, showing the current

high costs, and an extrapolation of those costs

Recognition of the existence of multiple paths in the design space between two
identical states, which will later be necessary for revising an implementation

It has also identified some general weaknesses on the part of extant transforma-

tion systems:

The general absence of explicit performance specifications G5

The consequential non-obviousness of motivation for the transformation system
to apply any transforms whatsoever

The absence of explicit specification of Gj,yarian: limits choice of which trans-
forms are legitimate to apply

We do not pursue these further in this thesis. We remark that these weaknesses

also appear to be present in conventional software engineering methodologies, and

solutions might consequently improve conventional practice.



Chapter 4
A Transformation Control
Language

Chapter summary. A performance-goal oriented, semi-procedural lan-
guage for controlling the transformational implementation process is described.
Satisfaction of intermediate goals provides purpose, and therefore justification,
for the transformations generated, necessary during maintenance.

Determining a path through the design space to an implementation is a diffi-
cult problem. Considering the number of steps involved in a typical transformational
implementation, it is clear that a manual scheme for choosing and applying transfor-
mations will be ineffective in all the but the simplest of cases. Consequently, (semi-)
automated means for navigating the design space are needed.

Hardwired control regimes are one possible answer, but suffer from being inflex-
ible, and requiring that the control knowledge be acquired before the transformation
system is ever used.

Explicitly specified control knowledge alleviates the problems of hardwired
regimes, but to date have been purely procedural. The control knowledge coded
procedurally has been termed a metaprogram [Fea79, Fea86]. Procedural languages
have long suffered the problem of requiring that all the interactions of knowledge
used in an application be thought out in advance of use; non-procedural languages
offer the possibility of simple encoding of knowledge and use of that knowledge in
problem-specific fashions without explicit planning for that case.

We additionally desire a control regime which can help us understand how the
applied transformations effect the final implementation, and which is non-procedural
to simplify coding. We think such a combination has considerable synergism. The
understanding of the relation of goals to applied transformations is crucial to effective
determination of transformations reusable during maintenance.

In this chapter, we describe the essence of a semi-procedural metaprogramming
language, TCL, for controlling the transformational implementation process.
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4.1 Requirements for control knowledge

We believe that navigation techniques should:

provide focus-of-attention similar to rule and data filtering

be explicit as opposed to implicit

be decoupled from the transformations they use

be somewhat non-procedural

be easily added to existing libraries of techniques

be easily referenced or indexed for use in explanations

The key problem in controlling the transformation process is deciding what
transformation to apply next, and where to apply it. Similar problems occur with pure
production systems, in which two major themes for controlling production application

are [BFKMS85]:

e rule filtering: choosing a subset of rules to consider for each firing cycle

e data filtering: limiting rule firing to a subset of database facts

Without such filtering, the branching factor at each point of the design space is very
large, and the transformation system will be bogged down simply trying to enumerate
the choices.

Most early transformation systems have either very little control knowledge, or
have this knowledge “wired-in”. The CIP system [BBG*78, BEHT87, BMPP&9], has
literally no control knowledge; interactive application of individual transformations
was expected. Transformation systems such as [BM84, BU86, SKW85, Mc(C88] have
hardwired navigation in the sense that the techniques are entirely procedural, and
are not open to revision once the transformation system has been constructed. For
example the TAMPR system [BM84], knows procedurally to apply transformations to
push the program through seven stages to achieve an implementation; the REFINE
transformational compiler is similar, using 5 major phases [Gol89]. Furthermore, the
control regimes are opaque in the sense that information about why the various applied
transformations were chosen is unavailable. Nonexistent or implicit control knowledge
cannot be used to justify why transformations were applied once implementation
is complete. We desire the control knowledge to be explicit so it can at least be
referenced for explanatory purposes.
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A single property-preserving transform may have several different effects as
seen by various performance measures, each effect being useful in one or more plans.
Consider the distributive law:

Tek(ly4+7z) = TexTy+ e xlz

Its application has negative effects on pgaisicaq as the program volume grows without
any increase in function. Yet embedded in a simplification routine that is trying to
eliminate multiplications by possible application of multiplicative inverses, the law is
quite useful. Consequently a particular transform may play different roles in different
navigation methods. We should keep the transforms separate from the plans in which
they are used: 1) to economize on reasoning about the possible useful effects, 2) to
allow us to reason about effects of interactions of multiple transforms independent of
the the plans in which they participate (this will be necessary for transformational
maintenance), and 3) to allow us to recognize effects common to several transforms.
Recognition of shared effect is key to the generalization leading to code optimiza-
tion by finite differencing as characterized by [Smi89], in which distributive laws (a
generalization of transformations with a certain kind of structure) play a key role.

Non-procedural navigation knowledge is desired in the sense that we want the
transformation system to decide for itself how to the apply the knowledge. Yet we
cannot go too far in the direction of purely declarative knowledge, for really efficient
application of this knowledge is only possible when knowledge has been compiled in
the form of procedures. Since general compilation of control knowledge from desired
effects is unlikely to be efficient in the near future, useful navigation knowledge must
have an element of procedurality to it. Our hope is to minimize the amount of
reasoning required by the transformation system during the implementation process.
We consequently expect that control knowledge will always be a mixture of declarative
and procedural knowledge.

Addition of control knowledge to existing libraries is necessary for the long-term
growth of utility of a transformation system, and necessary for short-term application
when needed control knowledge is absent.

Capture of application of control knowledge must be relatively easy, so that
we are encouraged to do so for the purpose of explaining why each transformation
was applied. “Why” ultimately boils down to the synergism of the indirect effects
on performance predicates of all the transforms triggered by the containing method.
We will need this information to allow a design maintenance system to reason about
which transformations in a derivation history are still useful.
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4.2 TCL: A Transformation Control Language

We designed a metaprogramming language, TCL [Bax87al, to meet these re-
quirements. The most important insight behind TCL is how much of the planning lit-
erature seems to have gone unnoticed (or at least, unmentioned) in the transformation
system literature; in particular, the notion of explicit hierarchical plans (procedure
plus goals). Explicit control mechanisms with hierarchical procedures have appeared
for several transformation systems [Wil83, GMM*78, GMW79, Pau87, Gol89, KBSS,

KB89b]. However, these all miss a major point:
A procedure needs to be associated explicitly with its intended purpose.

Without such information, a procedure cannot be looked up by its purpose,
cannot be validated after application in either its original context or a new context,
and cannot be used in any serious explanation. Considering that performance predi-
cates are needed to state such goals, and that few transformation systems make any
performance predicates explicit, the absence of plans with described purpose is hardly
a surprise.

In this section, we discuss an abstract characterization of a navigation process
based on the primitive mechanisms we identified for TCL.

The main ideas in TCL are:

Methods— heuristic procedures for controlling the transformation process

Mixture of procedural and non-procedural invocation of methods

Implicit and explicit alternatives

Indexing of methods by performance predicates in postconditions

Binding locales (this and locaters are new additions to [Bax87a])

We begin with discussion of locales as a necessary prerequisite to understanding
actions involving locales, and thus methods.
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4.2.1 Locales and locale expressions

A locale is a region of a program constraining the bindings of a potentially-
applicable transform . Henceforth we will limit the use of the term locator for locales
that are expected to generate just a single binding. Locales are consequently a form
of data filtering.

DEFINITION 4.1: Locale. A (loose) constraint on bindings:
(:8 xT — powerset(B)

O

Given a state and a transform, a locale can be used to determine if a locater value
is legitimate. It is convenient to name locale values with locale variables, designated
lv, to allow a locale to be multiply referenced.

Locale operations compute new locales. Such operations can acquire the value
of a locale variable, limit a locale value to a narrower region, or expand the scope
of a region somewhat. A locale expression e is simply one or more composed locale
operations computing a single locale. In a sense, a locale expression is a procedural
construct, in that it states how to limit the area in which a transform should be
applied. A nonprocedural characterization of locales might delay the definition of a
region until more information had been collected or it was actually needed.
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The set of appropriate locale operations is currently a little unclear. One needs
ways of delimiting the scope of application of possible transforms to particular regions
of programs. Obvious candidates for locale operations are:

o locale generators, such as “entirestate”, locater constants (such as tree paths
(2,3,1)) and actual locater values of applied transforms. PADDLE [Wil83]
provided implicit locale generation via pattern matching, used to define where
later tree edits would apply; we insist on locales as first class objects, so that
they may be manipulated.

e [ocale references: a locale variable name stands for the locale value it names.

e those provided by the structure of the underlying representation for the pro-
grams, such as:

— locale-narrowing, similar to the subtree selection provided by the LOCALFE
commands of the Draco system [Nei84h]

— locale-moving, such as tree-navigation techniques (strings of operations

“up” and “kthson” operations) used by SPECIALIST [KibT78]

— locale-expanding operations, such as “anywhere in the subtree” for a locale
selecting a node in a tree-based representation scheme, “expand to include
neighbors of current locale” in a graph-based representation scheme, or
“locaters of any property-preserving transforms which intersect the current
locale.” The ARIES specification assistant [JF90] allows walking a parse
tree via semantic links.

o locale performance partitions of the programs implicitly generated by scope-
of-effect on performance value functions, such as basic blocks (for pgp,.) or
name scope (for Pieaning ). A very interesting partitioning called program slices
[HPR87, HR88] is used to divide a program into semantically well-defined but
independent pieces (one should actually be able to optimize separate slices in-
dependently, although no work of this nature has been tried.)

e locale combining operations, such as unions, intersections, and complements;
these operations are well defined because locales are (binding) set functions.
Intuitively, these combine regions of the state.

The utility of these constraints will be determined by their effectiveness in encoding
useful methods. We simply assume that some locale operations are available.
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4.2.2 Methods and Actions

Individual property-preserving transforms applied by a transformation system
by definition preserve G,yariani- However, the transformation system has to somehow
achieve GG, by applying strings of such transformations. How can it determine such
a string?

Following the lead of conjunctive planners whose goals are sets of propositions
[SacT7, CM85, Wil88, Kam89] we split the target specification .5, into smaller parts,
each of which is achievable by (logically) separate (but possibly overlapping) plans.

In a transformational context, we use the term “method” to refer to plans cou-
pled with the descriptive information describing their effect. The name “method”
reminds us of their heuristic nature; we do not expect to always be able to code con-
trol algorithms, either because our techniques only work on special cases, or because
it is sometimes cheaper to simply try the method than it would be to evaluate an ac-
curate test defining when the method worked. The term “method” and its definition
are inspired by work on meta-level inference [Sil86], which uses heuristic methods to
solve college-entrance-examination algebra equations. Each TCL method consists of
a postcondition indicating what effects it is expected to achieve, and a body that gives
a procedure for how to accomplish the result. TCL methods can have preconditions;
but as they are not important to this thesis, we don’t make any effort to give them
special status.

DEFINITION 4.2: Method. A triple m = (i,a,G) consisting of an identifier 7, a
procedure a and a performance predicate (7, called the method postcondition. The
intent is that if it is legitimate to apply procedure @ to a design state s;, then G(a(s;))
is true with reasonable probability!. Thus, a method m is a heuristic procedure a for
achieving the effect . O

We extend performance predicates in method postconditions to allow variables stand-
ing for arbitrary predicates or values; this is used match method postconditions with
arbitrary predicates, in a fashion similar to Prolog. The identifier z of a method is
used to distinguish methods collected in a set of methods M.

1A useful piece of information that might be associated with each method is an empirically
estimated probability of success; then one could rank methods, providing a natural trial order.
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Each procedure describes a collection of steps, as well as sequencing of those

Steps may be transform applications, direct calls to sub-methods, or non-

procedural invocations of methods, as well as ordering of steps?.

DEFINITION 4.3: Procedure. A collection of actions with sequencing constraints.
The set of procedures is denoted A (think of these as “actions”), with individual
procedures a; € A. Procedures are recursively defined from the following actions:

0

APPLY (¢;, €), applies transformation ¢; somewhere in locale selected by expres-

sion e.

SEQ(ay,az), defining sequential composition of actions.
AND(ay,as3), defining parallel composition of actions.
OR(a1,as3), defining a choice between actions.
FELSFE(a1,as), defining a secondary choice between actions.

CALL(name, o) where name is the name of a method, and o is an argument list
consisting of performance predicates or locale expressions. We use the notation
nameo to mean the action name with o substituted appropriately.

REQUIRFE(G, e) where (G is a performance predicate, and e is a locale expres-
sion.

ACHIEVE(G, e) where (¢ is a performance predicate, and e is a locale expres-
sion.

ACHIEVEBY (G, e,a) where (G is a performance predicate, e is a locale expres-
sion, and «@ is an action.

PLAN(A,>,1.,) where A is a set of actions, and >,,,C A x A is a partial
ordering (specific to the plan) over those actions, constraining order of execu-
tion. Sometimes an empty partial order (no constraints) is useful; applying a
bag of transforms in non-overlapping locales is such a circumstance. An empty

partial order is represented by the symbol ). A PLAN captures the notion of a
nonlinear plan [Cha87, CM85, Kam89).

RETURN (€1, €3, €3,...), computing multiple locale values to be passed to a
parent action. This is useful only as the last action of a plan.

LET(lvq, vy, ..., a), capturing multiple locale values returned from action a.
The scope of the [v;s are plan elements necessarily following the LET.

LOCALE(lv,e,a) where [v is a variable name whose scope is the action a, and
e is a locale expression, possibly containing references to locale variables. This
construct allows locales to be computed and passed by name to sub-actions.

O

?TCL also has commands for displaying state information and querying the software engineer
about choices. These have little actual effect on the nature of control for TCL, and we consequently
leave them out for brevity.
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More complex actions could be defined but they would mostly be compositions
of these primitive actions, so we do not discuss them further here.

Note that LOCALFEs and LETSs form a single-assignment language with static
scoping similar to the notion of let in functional languages.

We remark that methods only attempt to apply a limited subset of the trans-
forms available to the transformation system: those directly invoked via APPLY , and
those indirectly invoked via ACHIEVE. Thus methods are a form of rule filtering.

Since methods are a kind of program, it could be useful develop them transfor-
mationally, as proposed by [KB89a).

4.2.3 A goal directed transformation process

A transformation system is supplied with a set of methods M4, as well as a
(partial) specification when it starts (Figure 4.1). Initially, the system constructs the
procedure ACHIEVE (G 51, entirestate) and “executes” that procedure.

Procedure execution consists of performing actions as specified by the procedure
steps, starting with the outermost. Flow of control is explicitly given by the various
actions. An action may fail; if so, backtracking occurs to a choice point and an
alternative action is tried. Given that the current state is s;, each of the consequences
of possible actions are given in the following paragraphs:

APPLY (¢;,¢) changes the design state to s;41 = cf(s;) for some ( such that
e(s;,0) = true. The value ( is logically RETURNed to a parent action; see discussion
of RETURN below.

SEQ(a1,az) executes az(ai(s;)). If either action fails, then SEQ fails.

AND(aq,ay) executes any interleaving of a; or ay under the assumption that
the serialization is equivalent to both as(a1(s;)) and aq(as(s;)). If either action fails,

then AND fails.

OR(a1,ay) establishes a choice point, and then executes, nondeterministically,
either ay or as. If the chosen action succeeds, then OR succeeds. If the chosen action
fails, then the other action is tried. If both a; and a, fail, then OR fails. A parent
action of OR does not hear about OR failing unless both alternatives have been tried.
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Figure 4.1: Transformation system controlled by Methods
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FELSFE(a1,az) establishes a choice point for ay, and executes aq. If a; succeeds,
then FLSE succeeds. If ay fails, then ay is tried. If both a; and ay fail, then FLSE
fails. The difference between OR and FLSFE is that for KLSE. ay can be designed
with the additional knowledge that a; failed.

REQUIRE(G, e) succeeds if G(F(e,s;)) is true, otherwise fails; this basically
just a test. F'(e,s;) refers to a region of the program f; defined by the possible
locaters determined by e; this region must be a well-formed program sub-scheme.
REQUIRE can be used to establish a filter [Kam89] precondition for a method
by structuring the method as SEQ(REQUIRE(G ), @poay ). A filter precondition
is one that is necessary for success of the method, but is inappropriate to try to
ACHIEVE; usually filter conditions test unchangeable attributes of entities, e.g., the
type of a variable. REQUIRE is used to check that part of a method postcondition
which is not provably true after method body execution by structuring the method

as SEQ(abodlm REQU[RE(GpTObanytTue ))

CALL(name, o) logically executes the procedure
SEQ(tnameo, REQUIRE(Ghumeo)) defined by the components of the named method
(name, dpame, Grame) € M in practice, it simply executes a,q4m.0. The substitution o
provides values for variables defined in the named method. CALL fails if the body of
the method fails, or the postcondition (& is false on completion of method execution.
Postcondition checking is optimized by structuring methods as outlined under the
description of REQUIRFE. This avoids the need to actually evaluate expensive per-
formance predicates (and their underlying performance measures) which are provably
true by means outside the transformation system.
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ACHIEVE(G, e) attempts to solve the performance goal G(F(e,s;)) by parti-
tioning it into subgoals of which at least one appears readily solvable by an existing
method, and then attempts to solve the rest of the subgoals. In detail, ACHIEVE
succeeds immediately if G(F(e,s;)) = true. Otherwise it performs a version of
means-ends problem solving by establishing nondeterministic choices for each method
my = (i, ar, G1) in the method library such that there is a substitution oy, and
performance predicate (¢, with® Goy,., G, F G. Fach choice is tried in turn
by executing the procedure AND(CALL(myg,{(e,0%.)), ACHIEVE(G,,€)). Success
of any choice causes success of ACHIEVE. Failure of all choices causes failure of
ACHIEVE. The identifier ¢ in retrieved methods is ignored. Note that ACHIEVE
can accomplish, non-procedurally, parallel actions that end in a desired result be-
cause it breaks a desired goal into multiple subgoals. It can also accomplish non-
procedural sequential composition of actions to effect a goal if methods have a struc-
ture SEQ(ACHIEVE (G e, €), @poay ); then backwards chaining for goal decomposition

takes place when the method is invoked.

ACHIEVEBY (G,e,a) is identical to ACHIEVE(G,e) with the proviso that

action a is attempted first. This provides a way of designating a favored action.

RETURN (€1, €2, €3, ...) computes multiple locale values to be passed to some
ancestral LET. This can be used to pass locations of interest from a plan or method
back to a higher-level plan.

LET(lvq, vy, ... a) captures multiple locale values RETURNed by action a
and assigns to the variables [vy, lvy, in the order RETURNed.

LOCALE(lv,e,a) assigns the value of locale expression e to the new variable
lv, and executes action a with variable [v visible for use in locale expressions in «.
Any previously visible [v may be used in e, but is not visible in a.

PLAN(A,>,u,) executes the actions a; € A in any order consistent with the
partial order >,;,,. Failure of any action a; causes failure of PLAN. Note that each
a; can be an OR or ACHIEVE action, so there may be multiple ways for a PLAN to
succeed.

3This requires second order matching facilities [HL78] and a theorem prover. We don’t dictate
how strong; a very simple one might simply compare subterms of conjunctive normal forms for
unifiability. The theorem prover may even reside externally in the form of a software engineer who
supplies the right values. We do expect that implications based on dominated performance bounds
(using various > relations) would be included in such a theorem prover.
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Nonlinear plans are generalizations of both
SEQ(CthlQ) = PLAN({CL17CL~2}7G1 > ClQ)

and

AND(ay,ay) = PLAN ({a1,a3)},0)

Consequently, we shall allow use of SE(Q) or AND in examples, but shall deal only
with PLAN in theoretical developments.

4.2.4 The role of the Software Engineer

The software engineer, during operation of the transformation system, is limited
to at most selecting from possible choices available to the transformation system when
executing the following actions:

e APPLY: the engineer chooses the exact locater

o ACHIEVE: the engineer chooses which method to use, the partition goal G
and/or the substitution o

e OR: the engineer chooses which alternative

Whether or not, and how this interaction takes place is beyond the scope of this
document.

Both Balzer and Cheatham suggest the need for an interactive transformational
implementation process because of the virtual certainty that the transformation sys-
tem is incapable of performing all possible optimizations [Bal85a, CHT81]; some opti-
mizations will invariably come from an outside agent. The software engineer (wearing
his domain engineering hat) may have insights for useful new transforms and/or meth-
ods while guiding an implementation , but is not allowed to introduce them directly
during the implementation process according to our model. Such insights must be
introduced instead as support technology deltas (Chapter 6). This requirement does
not prevent an interactive process of switching between implementation and applying
deltas to revise information known to the transformation system.

4.2.5 TCL Examples

In this section, we provide several examples of TCL to give the reader an idea
of its scope.
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Control via Script

TCL can express any specific transformation sequence, or script, of transforma-

. , ‘
tions i, ¢, ..., ¢;r as follows:

Mspecific = <5p€c'iﬁc7 Aspecifics ?g>

with action

Aspecific(Iv) =SEQ(APPLY (¢4, (4),
SEQ(APPLY(C%gz)?
SEQ(APPLY(C:g?gg)? e

The “?7¢” postcondition (meaning 'unknown’) of the method will match a top
level ACHIEVE((true, entirestate), and aspecife will then run.

The constructibility of any transformation sequence allows TCL to be used to
build a method for constructing any specific implementable artifact, although that
method may be useful only for that single artifact.

Barstow [Bar88, Bar89] apparently expects to use scripts of some type to apply
transformations in ®-NIX. He does not give enough detail to determine what locaters,

if he has them, look like.

Blind Search Control

This example uses TCL to describe a transformation system with completely
blind search, i.e., is willing to try any property-preserving transform anywhere, any-
time. All one need to do is to package all the property-preserving transforms ¢; in a
single method

Mytina = (blind, ayiina, 1)

with action

apina(lv) =OR(REQUIRE (g, lv),
SEQ(OR(APPLY (1, lv),
OR(APPLY (¢3, lv),
OR(APPLY (c3,v),. ..
... APPLY (¢i¢}, Iv))))
ACHIEVE(?g,1v)))
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The REQUIRE action in this example does not act as a precondition of myj,qg
because it is not part of a SEFQ(REQUIRE(...),...) idiom. Instead, the REQUIRFE
acts as a loop termination test of the tail-recursion caused by the trailing ACHIEVE.

Starting TCL with ACHIEVE(G o5, entirestate) will run myp,q because its post-
condition, 7¢, has the property that 7¢,true - G,.oy with 0 = 7¢ — G5, causing
TCL to propose the procedure

AND(CALL(blind, entirestate ), ACHIEVE(true)))

Myjig will then nondeterministically try every possible sequence of transforms, and
test the resulting string for the desired (5,5 via the substitution of o on 7¢g. A failed
test will cause a backtrack, and an alternative will be generated.

Using the same form as myy, 4, and using just transforms which monotonically
decrease some performance value (e.g., transforms which decrease execution time such
as 7w +0 =7x), one can form “simplification” methods similar to those of PADDLE
[Wil83], but constrained to operate over a specified locale, which PADDLE cannot

express.

Control for MEDUSA

In Section 3.2.4 we briefly described the MEDUSA system. We emulate some? of
the implicit control of MEDUSA which achieves complexity limits, using explicit TCL
methods. Rather than using an example from MEDUSA’s domain of computational
geometry, we use a more familiar example of sorting.

AMEDUSA also has built-in constraint propagation to further minimize poor choices. TCL does
not provide constraint propagation, although it would appear to be a promising addition.
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G ==

3)
sort(B)

Figure 4.2: Cpeaning,sort,mergesort transform and “kthson”s

Remembering that MEDUSA transforms substitute code-skeletons for place-
holders, we assume the existence of a set of ¢,,caming ik © 7 — codeskeletony, for every
placeholder j. For each such transform, we define a method

j—to—k,
mjﬁk(lv) : APPLY(memngﬁjﬁhlv)? >

Peomplezity (codeskeletonk) t complexity Pcomplexity (])

For instance, assume the placeholder “sort”, with two transformations:
Comeaning.sortbubblesort * SOTH(X) = ... codeforbubblesort . ..
and

cmeaning,sort,mergesort ZSO?“t(X) -
split(X)to(A, B);
mergesort(A)
mergesort(B);
merge( A, B)to(R);
return(R)

1

A possible tree transformation to mergesort is shown in Figure 4.2 where each
(k) indicates a kthson of the right hand side, used in @,ergesort below.
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These two transforms induce the following methods, decorated with complexity

costs:
sort — to — bubblesort,
Mesort bubblesort(10) = { <. APPLY (Cpieaning sort,bubblesort s [0), - - . >
Peompleaity (€) = O(n?)
and
sort — to — mergesort,
msort,mergesort(lv) = Umergesort s >
Peomplesity (€) = O(n logn)
with
Amergesort (V) =

SEQ(LET(ZUO7 APPLY(cmeaning,sort,mergesort7 11)))7

PLAN(LOCALE(lvy, 1thson(lve), ACHIEVE(peompierity == O(n), lv1)
LOCALE(lvy,2thson(lvg), ACHIEVE(promplezity = O(nlogn),lvy))
LOCALE(lvs,3thson(lvg), ACHIEVE(promplezity = O(nlogn),lvs))
LOCALE(lvy, 4thson(lvg), ACHIEVE(promplezity = O(n), lvy))
LOCALE(lvs,5thson(lvg), ACHIEVE(promplezity = O(1),v5))

#) % no ordering on plan steps

The @pergesort plan steps restrict the attention of the transformation system to
the various placeholders in the code skeleton for mergesort, and ensure that each
such step is implemented with the proper complexity to support the postcondition
of the method®. For instance 4thson(lvy) refers to the merge(A, B) step, which is
constrained to performance level O(n) to ensure the overall O(nlogn) performance
of the entire mergesort. Notice that no checking for a correct postcondition is made,
because it is a provable consequence of the plan.

Now a MEDUSA mixed specification (sort,O(nlogn)) will set fo = sort,
cause the the implied TCL command ACHIEVE(O(nlogn), entirestate) to reject
Mesortbubblesort AN LYY Mot mergesort, leading to a correct implementation.

5This method is one for which the method postcondition need not be evaluated, as it is provably
true.
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4.3 Related Control Mechanisms

TCL was influenced by a number of other control mechanisms. In this section we
review the ideas behind some other control mechanisms and discuss, where relevant,
how TCL implements or improves on some of those ideas. The mechanisms that we
considered fell primarily into the following categories:

Procedural control

Production systems

Metaprogramming

Planners

We consider each of these in turn. Readers not interested in comparisons may
skip to the summary without loss of continuity.

4.3.1 Procedural control

Purely procedural control consists of control programs using the full range of
constructs (such as loops, conditional, procedure calls, etc.) from an arbitrary pro-
cedural programming language (such as LISP) not designed specifically to handle to
the control problem.

Transforms may be implemented directly in the language, or may have be in-
voked as entities defined in a different notation. The REFINE system [SKW85, Rea86]
is a good example of a transformation system with procedural control. It allows con-
trol procedures to be coded in the REFINE wide-spectrum language containing pro-
cedural primitives. REFINE transforms are coded as tree rewrites using REFINE’s
transform operator, applicable to a predefined tree data type, or can be implemented
by direct surgery on such trees.

We have already argued against purely procedural control for metaprogram-
ming. The fundamental reasons are that such control is hard to code and hard to
reason about. Commercial vendors can perhaps afford to amortize the costs of coding
a fully procedural control such as that of the REFINE language transformational com-
piler [SKW85] by amortizing those costs over the large customer base. However, we
think that the need to mechanically reason about plans, individual transformations,
their interactions, and how they justify the final artifact, especially for maintenance,
will eventually force nonprocedural elements to appear in every metaprogramming
language. Such a need to reason about the plans requires that those plans also be
explicit, as opposed to implicit as they are in REFINE compiler.
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We want to reiterate the value of a semi-procedural language, providing both
the efficiency benefits of procedural execution by avoiding repeated reasoning about
how to accomplish some effect, coupled with declarative descriptions of effect. This
is the fundamental reasons for the notion of METHOD in TCIL: a linkage between
procedural acts and the explicit effect they are supposed to achieve. The limited
set of control primitives in TCL (FLSE, CALL, PLAN) are an attempt to provide
the needed element of procedurality without making the set too rich for maintenance
analysis; further discussion of this will have to wait for Chapter 8.

4.3.2 Production Systems

Production systems consist of a fact database, and a set of inference rules used
to augment the database by adding new facts or deleting existing facts [BFKMS85].
A production system cycle consists of determining which rules match (perhaps, for
each rule, in many ways) to which facts, performing conflict resolution by choosing
just one rule/binding pair, and updating the database according to the consequences
of the chosen rule with the chosen binding. The branching factor induced in such
a space is roughly proportional to the number of facts in the database times the
number of rules; with a large data- and rule- base, the production system can spend
most of its time performing conflict resolution rather than actually applying inference
rules. Consequently emphasis on control for production systems is on rule- and data-
filtering which limit the focus of attention to a subset of the available rules and data.

A transformation system has the identical problem when attempting to deter-
mine which transformation to apply. TCL provides data filtering via the notion of
locale, which restricts the attention of transformation system to semantically-defined
regions of the state. Locale expressions compress or expand locales according to the
semantic structure of the program being manipulated, and can be passed between
methods as a means of ensuring continued focus. While locales are present in various
forms in some other transformation systems, they are not first class entities, cannot
be manipulated, and cannot be passed explicitly. We cheerfully admit the need for
considerable further work on locales to identify the useful locale “scaling” operations.

TCL provides rule filtering via method bodies, which either explicitly specify
which rules (transforms) are to be applied via APPLY, or implicitly specify rules via
indirect applications caused by methods invoked by CALL or ACHIEVE. Hierarchical
planners have long had this sort of rule filtering, but the focusing effect is not dis-
cussed.

Systems like OPS5 [For82] perform a metamatch of each rule to all the other
rules. The value of the metamatch is that it identifies, for any particular rule, what
other rules might potentially apply once this rule has been used, and which data used
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or generated by this rule would be relevant. Rule- and data- filtering are then achieved
by only trying the rules that metamatched the previously fired rule; this shortens
the conflict resolution considerably. The DRACO transformation tool [Nei80] uses
metamatching in this manner. TCL does not use metamatching in any fashion. It
is not clear how valuable this technique would be considering TCL’s already existing
focusing mechanisms.

Another approach to lowering the cost of applying the productions is to apply
multiple productions in parallel. Schmolze [Sch89] suggests methods for determining
sets of productions whose parallel effect is identical to their serial effect by inspecting
their interactions. It might be possible to do this with TCL methods since they are
really just complex transforms; the explicit postconditions should make this somewhat
easier.

While both metamatching and parallel application shorten the time required to
apply productions (or transformations), they do little for the problem of choosing the
right productions, i.e., those that lead to a desired conclusion. In a Church-Rosser sys-
tem, one need not choose the right productions because any sequence productions will
do, but few practical systems have that property. Consequently we have not invested
any energy on these techniques. Metamatching of transforms from various methods
could be used to automatically identify potentially applicable “next” methods, but it
is not clear how valuable this would be.

One can operate a production system in either a forward-inferencing (facts plus
rules give new facts) or backward inferencing (from what facts and rules can a de-
sired fact be deduced?). Transformation systems rarely do any backward inferencing
(application of transformations in reverse) because to doing so is tantamount to look-
ing for a specification of an artifact already possessed. While this might be valuable
for design recovery of existing code, it is not the purpose of transformation systems.
Backward inferencing is necessary in TCL when matching method postconditions

with ACHIEVE actions.
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4.3.3 Metaprograms

We now compare TCL to several control schemes for transformation systems,
generally called metaprogramming schemes. The most influential systems were Draco
(simply because of our early experience with it, and the idea of domains), PADDLE
[Wil83] and PRESS [Sil86]. The control schemes we cover, and their fundamental

ideas, are:

e Draco: Transformation by refinement through domains

o PRESS: Meta-level inference and hueristic methods

e PADDLE: Procedural metaprogramming language

o Goldberg’s metaprogramming language: program regions as first-class values
e PROSPECTRA: Functional metaprograms specified algebraically

e SPECIALIST: Dynamic chaining

e Zap: Functional goals with focus by data-filtering

e Glitter: Automatic application of subsidiary transforms

Draco: Domain-oriented Transformation system

The DRACO transformation system [Nei80, Nei84a, Nei89] transforms programs
written in abstract problem domains into programs written in target execution lan-
guages (domains). It does not neatly qualify as a metaprogramming system, nor as
any other simply described system, because it used a variety of built-in mechanisms
to control navigation:

e domain refinements

global assertion/condition constraints on refinements

transform priorities

metamatching
e a primitive form of LOCALFE

e simple user-definable tactics

Part of the original motivation for TCL was to unify and make explicit many of these
mechanisms.

Domains are problem-description languages; domain refinements are a special
kind of transform (similar to the theory morphisms outlined in Section 3.1.7) used
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to map programs in an abstract problem language (say, natural language query pro-
cessing) into programs in a more concrete problem language (e.g., parallel LISP).
Use of abstract problem domains is encouraged by the Draco paradigm in an effort
6. A reasonable domain network (graph of
domains plus refinements directed from one domain to another) allows conversion of

to make problem specification simpler

an abstract problem statement to be refined to concrete executable languages such as
FORTRAN. Such a refinement sequence is shown in Figure 4.3. 1In practice, Draco
applies simplifying transformations at each domain level before refining down to the
next domain.

A domain network provides considerable guidance to the transformation process.
If one has simply an enormous library of potentially applicable transforms, and a large
specification, the branching factor at each point in the implementation space is large;
since a typical derivation history is tens of thousands of steps long, the number of
potential paths is overwhelming. One method for limiting search is using the notion
of “islands” in the search space [BF81, Pea84]. The islands analogy likens the search
space to an enormous ocean to cross; the crossing process is much easier if there are
many islands scattered over the ocean, some of which are not too far out one’s desired
path. Islands along the path act as short term achievable goals. Each domain in the
a domain network acts as an island in the search space. Navigation is aided because
major steps in the implementation process are implicitly defined by directionality the
domain network from abstract domains to concrete domains (the TAMPR system
levels of abstractions [BM84] form such a domain network).

While the Draco tool could be told to refine to specific individual domains one
at a time, there was no way to tell it to find an implementation by refining the
specification “somehow”. This can be done with TCL by defining a performance
measure Piomain Which determines the domain type of a program, and providing a
representation of the domain network graph as a method library composed of a set
of methods of the following form:

MoyefineJtoK = <7°€ﬁn€<]t0[(7 aT@ﬁneJl‘oK7pdomain(lv> — [{>

aTeﬁnethI((lv) :SEQ(ACH[EVE(pdomMn(Z’U) = J)7
SEQ(CALL simplifyindomainJ (lv)
APPLY (zfmdomainJtodomaink , [v)

6Tt is interesting to note that other transformation systems with active research groups are evolv-
ing towards the domain notion (for the TI system, they are called local formalisms [Wil86]; we
see them in TAMPR as the language levels between the phases of the transformation process (ap-
plicative LISP, recursive FORTRAN with local variables, recursive FORTRAN with no parameters,
nonrecursive FORTRAN, etc.) [BM84, p. 580], and in REFINE in the form of encouragement to
build problem-domain specific languages.
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Figure 4.3: Transformation via domain refinements
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One method is needed for each transformation zfmdomainJtodomainK that
refines domain J to domain K. Invoking TCL with ACHIEVE(piomain(f) =
FORTRAN) will then find, by a backward chaining process, a sequence of domain
simplifications and refinements to produce a FORTRAN program. Such a set of
methods implements the essential Draco implementation paradigm.

Draco refinements were actually rules that rewrote fragments of a program at
one level into program fragments at lower levels. Since a fragment had multiple pos-
sible refinements to other domains, a difficulty was ensuring that several separate
domain fragments at one level refined consistently with one another; this was ac-
complished by assertions and conditions. Assertions were declared when a domain
fragment was refined in a certain way; conditions attached to a refinement could
check that a consistent assertion was already established. Assertion/condition con-
straints are not implemented in TCL directly; rather, our belief is that the entire
program representation must be refined as an entity in accordance with [ST88], and
so the design of TCL assumed an algebraic view in which theory morphisms act as
the mechanism for refinement [TM87]. This allows the refinement to be represented
as a single transform. We unfortunately did not have time to explore this thoroughly
for this thesis, but feel this is a promising avenue.

Within a Draco domain, simplifying transformations are prioritized; the pri-
orities allow groups of transformations to be designated and applied by priority
range. Metamatching caused simplifying transformations from the same domain to
be matched against one another at transform definition time; this allows the runtime
application of one simplifying transformation to efficiently “suggest” (because of a
successful metamatch earlier) the application of other simplifying transformations,
saving a considerable amount of matching time. The value of transformation priori-
ties as priorities was not demonstrated by the Draco tool; if anything, we found the
priorities ended up being used simply as a means of grouping transformations. We
have already discussed how TCL can collectively apply an arbitrary group of trans-
formations in our earlier discussion of mjy,up. Metamatching could be useful for
such simplifying methods.

The Draco notion of LOCALFE, a specified subtree of a tree program scheme,
we have generalized as locaters and locales for TCL. Commands for moving up and
down in a tree locale correspond to TCL locale scaling operations.

While Draco did provide choices in terms of multiple possible refinements, and
multiple possible transforms, it had no ability to backtrack in case of a bad choice.
TCL assumes such backtracking ability to back out of poor choices, and a controlled
sequencing of alternatives via the ELSE action”.

“We will see in Chapters 7 and Chapters 8 a kind of dependency-directed backtracking mechanism
expected to complement TCL.
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Finally, user-definable Draco “tactics” allow a software engineer to establish
a preference for certain types of refinements over others (such as inline substitu-
tion of code (MINIMIZE-TIME) vs. creation of subroutines for instantiated code
(MINIMIZE-SPACE)); this is effectively a procedural encoding of a goal predicate.
The emphasis with TCL is to express the performance goal (which Draco simply
cannot do) and let an appropriate method accomplish the effect. TCIL carries the no-
tion of user definable tactics quite to the extreme by being virtually a programming
language in its own right.

Overall, TCL seems to be expressive enough to describe Draco’s control mech-
anisms.

Neighbors has argued that simple control mechanisms such as Draco’s simplify-
in-domain, refine-to-next-domain are sufficient for transformational implementation.
Glitter’s order-of-magnitude reduction in manually-specified transforms [Fic80, Fic82,
Fic85], the PADDLE system [Wil83] of complex, problem-specific metaprograms to
control transformation sequencing, and LCF’s proof plans [GMM*78, Pau87] have
shown that complex implementation plans are required to carry off complex imple-
mentations. Again, these observations lead to TCL as a necessary part of the design,
and therefore maintenance, mechanisms.

PRESS: Meta-level Inference

A technique for controlling search in large search spaces, called meta-level in-
ference by Silver [Sil86], groups problem-space operations having the same effects on
states into “method” (this inspired the name for TCL methods, although a PRESS
method corresponds to a set of TCL methods with identical postconditions). Each
PRESS method becomes, in effect, an equivalence class of operators. Method postcon-
ditions specify the effects; method preconditions state necessary (but not necessarily
sufficient) conditions for method to achieve its postcondition. The methods then
treated as operators in an abstract space whose actions are defined by the method
postconditions; this is similar to hierarchical planning (discussed later). Problem solv-
ing consists of blind forward searching by application of methods until the desired
effect in the original problem space is achieved. Search savings over the original space
occur because each method tried represents an entire class of operations, and the
preconditions often eliminate application of a method altogether. Postconditions are
checked after method application to verify that the method has truly accomplished
the shared effect; Silver argues that it is often cheaper to have a weak precondition,
with a dynamic postcondition check that catches those cases when the method runs
incorrectly, than it is to encode a necessary and sufficient precondition.
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The utility of the idea was shown by PRESS, an expert algebraic equation
solver. Silver outlines a number of specific methods for solving algebra expressions;
such techniques might be useful in solving in a constraint-propagation subsystem
or simplifying conditions on conditional equations. Since TCL is similar to Silver’s
methods, we think that coding his particular methods would not be difficult, but are
of no further interest for this thesis.

Silver’s “meta-theory syntactic features”, such as “term-occurrence count” used
in his method postconditions are formalized as performance measures used in TCL
method postconditions. Silver gave no justification for his choice of his syntactic
features; we think they are problem-domain dependent and expect the same will
be true with TCL. An unsolved domain-engineering problem is determining which
performance measures and goals to define; knowing that one will be operating in
the domain of algebraic equations does not obviously lead to the notion of “term-
occurrence count” as useful.

PRESS actually tries its methods in a particular hand-selected hardwired order;
this order presumably had to do with the probability that a particular method had
of solving a random problem or leading a step closer. Ranking TCIL methods for
application according to a dynamically-updated ratios of past successes to failures we
think would give the same result with less effort.

TCL directly incorporates the idea of “method” with its dynamically checked
pre- and post- conditions. TCL allows a complex plan to form the body of a method,
which generalizes PRESS view of method as “bag of equivalent-effect operations”.
Further, a number of TCL. methods may have the same postcondition; this allows
incremental addition to a knowledge base of methods. TCL also differs from PRESS in
using goal-directed backward inference to select methods to apply; the post-conditions
tell TCL, when a method might be useful. Apparently the size of problems handled
by PRESS was small enough so the notion of locale was not needed.

PADDLE Metaprogramming Language

PADDLE [Wil83] is a procedural language (and supporting system) for defin-
ing a program developments, i.e., a metaprogram to generate the steps used by a
transformation system to implement a program scheme. A PADDLE metaprogram
consists of a set of parameterized procedures called “commands”; command names
consist of arbitrary English text strings which summarize the action of the procedure.
Each procedure may contain program pattern-matching operations, replacement op-
erations (which substitute new program fragments at points designated by previous
pattern-matching steps), invocations of “goals” (procedure calls to other named com-
mands), and compound operations for conditional branching and looping operators.
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command divide and conquer(function,set)
begin
split set = {eq, eq,...} into subsets s1,89,..
by
choose from
partitioning into sy = {e1} and sy = {eg,€3,...};
binary partitioning into sy = {e1,...,e5/2} and so = {eg/o41,-- -, €k };
basis partition sg, s1, 82, $4, Sy
where each e, is a linear combination of the sy;;
end
compute a related function f; on the subsets;
combine values of f; on subsets via a new function fs;
note You must ensure that function applied to set = f, applied to {fi(s1), fa(s2),...};
end

Figure 4.4: PADDLE procedure, taken from [Wil83, p. 908]

Transforms are defined by the distributed effect of pattern-matching and replacement
operations. PADDLE metaprograms also appear to be augmented by procedural
LISP when convenient. An example PADDLE command is shown in Figure 4.4. A
PADDLE metaprogram is started by invoking a particular command.

A goal is traditionally an evaluable predicate that can be applied to a state,
which is true in desirable states. By this definition, the term “goal” as used by
PADDLE seems unconventional; it refers instead to subplans. Thus, while one of
the stated intentions behind PADDLE is to capture the implementor’s goal struc-
ture, what it truly appears to capture is the implementor’s plan for implementing a
program®. Goals are simply not present.

Given a specification, executing a PADDLE program generates an implementa-
tion by executing the “goal” structures in sequential order (just as in any conventional
procedural language executing statements); no variability in order is allowed. Failure
to successfully execute a “goal” (including failed execution of a pattern-matching
primitive for which no explicit alternative has been provided in the metaprogram)
halts the development process; a designer may then direct the development by hand
by changing or adding new PADDLE procedures, or hand-invoking PADDLE com-
mands. There is apparently no facility for backtracking; to “undo” the kth applied

8(ertain planning systems such as FORBIN [DFM90] also seem to overload action names to also
represent desired effects. This is reminiscent of the use of functional specifications for a true speci-
fication. This idea can work well when the functional specification is very abstract, but functional
specifications in a low level language have many consequences which are usually irrelevant to the
task at hand.
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transform, one simply executes the PADDLE program forward from the beginning
until £ — 1 transforms have been applied. Since transforms are distributed over the
procedure, it is not clear just how this counting process takes place.

PADDLE provided the initial inspiration behind TCL, including the notion of
subordination of “goals” (TCL CALL command), and conditionals (FLSE). TCL
deviates from PADDLE by insisting on transforms as monolithic entities so that in-
teractions between transforms can be reasoned about (see Chapter 7) without having
to know how to extract a transform distributed across the body of a command. TCL
postconditions express the goals that a method is supposed to achieve, so that the
goal structure that drives an implementation at least has a chance of being extracted
from a TCL implementation process. TCIL backtracks on failed methods instead of
blocking in an attempt to automate more of the implementation process. Selection
of TCL methods by means-ends analysis should allow a method to be used in con-
texts not exactly chosen in advance, whereas PADDLE commands can only be used
in circumstances designed in advance. In fact, a PADDLE metaprogram may at-
tempt to apply a complex transformation inappropriately, simply because it has no
performance goal condition to prevent it, nor any way to determine after such an
inappropriate application that the attempt failed.

REFINE Language and compiler

Smith [SKW85] describes REFINE, a transformation system that, like Gist,
uses a high level wide spectrum language called V. Unlike Gist, there does not seem
to be an explicit requirement for executability at the specification level. The language
provides declarative structures using predicate-calculus notions and sets, procedural
notions (conditionals, function calls, loops, arrays, etc.), a special datatype used to
construct abstract syntax trees, and a tree-transform operator. Functional specifica-
tions are written using the declarative structures where possible. Such specifications
are converted directly into the tree data structures understood by the REFINE sys-
tem. The tree data type and the transformation operator do not appear to be intended
for general specifications; rather, they appear to be in the REFINE language only so
that transformation control mechanisms can be coded in REFINE directly. This way
the REFINE system need only support one language.

The pattern-directed tree-transforms allow one to state the desired form of
the resulting tree, and REFINE will find some way to transform the tree to match
the desired result. A typical example is to state a € b = a & b; this causes a
DeleteElement (a, b) operation to be inserted into the syntax tree. The ability of
REFINE to satisty such requests is unclear, but it apparently only works for very low
level transformations. One is also allowed to code arbitrary conventional tree-to-tree
rewrites with these transforms.
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Transformation control in REFINE is essentially procedural. A single primitive
transform can be applied, or a low-level REFINE procedure can be coded to apply
some set of transforms in an arbitrary fashion. Special built-in procedures allow
a sequence of transforms to be applied in order, or to repeat a set of transforms
starting at the leaves of tree working up, or at the root working down to the leaves.
The REFINE compiler is apparently coded as a very large set of such procedures
that transform high-level REFINE code through several phases and ultimately into
Lisp. The fact that the REFINE compiler is coded in REFINE provides a convenient
bootstrap. No explicit notion of domain is used to organize the transformations, but
recent work [Rea86] seems to be providing domain-tags in the form of class-entities
as containing-super-types of objects to be transformed.

An interesting but apparently little-used facility in REFINE is the ability for
the transformations to “explore” partial implementations and backtrack if they prove
to be unpromising [KanT79].

TCL treats both state and transforms as primitive objects rather than complex
data structures. Nearly arbitrary procedures can be coded using the procedural com-

ponents of TCL: APPLY, CALL, and ELSE. We will see the utility of restricting

TCL operators to a well-defined set when we attempt to reuse a design history.

Goldberg’s Metaprogramming System

Goldberg [Gol89] describes a tactics (metaprogramming) language to be used
with the KIDS [Smi89] enhancement of the REFINE transformation system [SKW85].

Primitive tactics implement the actual transformations, and are implemented
as REFINE procedures. Higher level tactics consist of compositions of primitive
tactics, predefined control mechanisms such as “sequence”, “paralell-execution”, IF-
THEN-ELSE with a conventional boolean test (calling a REFINE function to get the
boolean result to be tested), a failure trap (like TCL FLSE), looping mechanisms
such as WHILE loops, and tactic procedure calls. All tactics may return multiple
results for use by the caller.

Similarities to LCF are claimed, but LCF constructs tactics by use of higher-
order functions, which Goldberg’s tactics language does not seem to have. This tactics
language seems to be most similar to PADDLE in terms of control mechanisms. Its
most interesting feature is the notion of “program-part”, which is apparently inher-
ited from the underlying REFINE abstract-tree representation of the program being
manipulated; a program-part represents a syntactically complete program fragment,
and can be passed around as an entity from one tactic to another. A sample tactic is
shown in Figure 4.5.
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Combine-Loops(p: program-part) =
let loop-1: program-part,
loop-2: program-part,
combined-loop: program-part
in while exists-combinable-loop(p)
do find-combinable-loops(p) returns loop-1, loop-2;
merge-loops(loop-1,loop-2) returns combined-loop;
simplify(combined-loop) end

Figure 4.5: Tactic from [Gol89, page 6]

Goldberg’s tactics language, like PADDLE, is entirely procedural; unlike TCL,
there are no goals to achieve or postconditions defining the effect of a tactic.
Apparently the decision to avoid postconditions is conscious, as he believes that spec-
ification of postconditions is “unwieldy”. Unwieldy or not, we think they are hard to
live without, especially if explanation of the final artifact is desired. The notion of

program-part shows up in TCL as a locale. TCL.’s RETURN construct was inspired
by Goldberg’s.

PROSPECTRA

The PROSPECTRA transformation system [KB88, KB89b] is intended to con-
vert specifications in Anna [LvHKBS8T7], a semantic annotation language, into Ada.
Higher-order algebras with functionals (functions allowing functions as arguments
and/or results) provide a unified approach used to specify modules, transforms, and

control knowledge [KB89a).

Abstract data types are specified using algebraic specification techniques ex-
tended with functionals. (Ada) modules are defined using the properties of the ab-
stract data types they manipulate. Transforms are defined as operators over abstract
syntax trees (which are just an abstract data type) and can be given algebraic char-
acterizations in their own right. Control knowledge is encoded as functionals ap-
plied to transforms and/or other functionals, in the same vein as LCF (discussed in
Section 4.3.3); as an example, a MAP functional can apply a simplification functional
to the enumerable components of a particular program. This scheme is much nicer
than LCF’s in that algebraic specification of control functionals can also be given.
This offers the possibility of specifying the control knowledge algebraically, allowing
one to reason about it, and even implementing functionals that meet the specification.
Control knowledge treated as functionals leads to the perspective that control proce-
dures are really just more complicated transforms. It is claimed that working with
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functionals leads to a higher degree of abstraction, with repetitive processes reduced
to application of homomorphic extension functionals. Uniformity of definition allows
both transforms and metaprograms to be defined using the same approach; in fact,
the control language is a subset of the transform language.

TCL does not provide any functional features, although we have no fundamen-
tal objection to them. However, it is paramount to a control language like TCL that
methods be described in terms of their effects. While the PROSPECTRA control
language does not offer this facility directly, it would seem to be relatively easy to en-
gineer using the algebraic specification tools that are integral to PROSPECTRA?; this
would seem to be a promising avenue of research. As it stands, the PROSPECTRA
control language is purely procedural. TCL allows non-procedural execution.

There seems to be nothing similar to the notion of locale in PROSPECTRA.
This absence may be due only to the sketchiness of the available literature.

LCF

Any system for generating proofs is a kind of planning system; the emphasis is
on the construction of a proof (a path from the antecedents to the consequent) and
not on the final result, which is presumably known before the proof process starts.
LCF [Pau87] is a remarkably simple proof construction system in which control pro-
cedures are built on top of a functional programming language ML, [Har86, HMMS6],
based on the notion of tactic and tactical for backwards inferencing. It has been
used to construct very large proofs, on the order to 10° inferences [Pau87, p. 10], so
its techniques should be usable for large scale control necessary for transformation
systems. We go into rather more detail because this system is so unique.

Theorems (LCF’s version of program schemes) are encoded as syntax trees rep-
resenting PP\ statements, a kind of logical formalism, of a form

assumptions = conclusion

An operator in this space is a logical inference rule, which is procedurally encoded as
an ML function mapping theorems to theorems.

A tacticis an ML function applied to a goal theorem; it is supposed to determine
a possible proof of the theorem by decomposing it. Each tactic returns two values, the
first being a list of subgoal theorems, and the second being a function which combines
the subgoal solutions into a complete solution (i.e., is an inference rule). The full

°In a similar vein, we briefly considered the notion of performance algebras to allow coupling of
TCL transforms to their effects.
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procedural power of ML can be used in the decomposition process provided only that
the tactic’s inference rule properly re-composes the decomposition to produce the
argument.

If a tactic cannot decompose its argument, it can signal an exception; another
tactic at a higher level can catch the exception. TCL handles failed methods via its
OR and FLSFE sequencing primitives, as well as by alternative methods with identical
postconditions. Both LCF and TCL seem relatively unique in the planning world in
having conditional plans.

Tacticals are ML functions that map tactics into tactics. An LCF tactical
ORFELSE, taking two tactics and applying either, can be implemented by applying
the second tactic if applying the first tactic produces an exception. Much more
complex tacticals can be built, including REPEAT, THEN and list generalizations
such as FVERY and FIRST by simple variations of this idea. Much of the power of
LCF tactics (as with PROSPECTRA control mechanisms) stems from the ability to
pass (tactical) functions as arguments and apply them. TCL has no such ability.

LCF tactics and tacticals correspond to TCL methods, but, being totally pro-
cedural, have no postcondition stating their purpose. This is a major problem if one
wants automated control, because that tactics cannot be reasoned about conveniently
or, for maintenance purposes, incrementally replayed. This means that no automated
tool can conveniently combine a set of tactic(al)s to provide a proof automatically;
the tactics controlling an entire proof must be assembled by hand.

A big advantage to ML tactic(al)s is that new ones are easily coded, so the goal
decomposition rule need not be fixed as it is in TCL.

SPECIALIST

The SPECIALIST system [Kib78] simplified Algol-like programs when given
input data constraints. A typical application of SPECIALIST could reduce a gen-
eral matrix multiply, with an input constraint that one argument was an identity
matrix, into a matrix copy routine. Knowledge about input constraints is converted
into special transformations and thereafter treated identically with other transforma-
tions. Control of the application of transformations is by dynamic chaining. Dynamic
chaining requires that each applicable transformation be decorated with procedures to
generate lists of other transformations that could apply if the current transformation
was successful, and where they would apply, relative to the application of the current
transformation (this corresponds to TCL locale moving operations). Successful appli-
cation of a single transformation then suggests others to apply via dynamic chaining;
SPECTALIST could apply up to 90 transformations by itself this way. Carrying this
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idea of pointing out potential next applications to an efficient extreme leads to the
notion of metamatching as used in Draco. TCL can accomplish the same effect by
defining a locale relative to the current locale in which simplifying METHODs can
be applied. Implicit in control by dynamic chaining is the assumption that what-
ever the chain of transformations is doing is what is desired; the implicit goal for
SPECTALIST is code simplification. An important difference is that SPECTALIST
ties the transforms directly to their intended use, while TCL methods decouple the
transforms from intent.

Zap

Feather’s Zap system [Fea79] transforms a program consisting of sets of “inef-
ficient” functional equations (a form of functional specification) into a more efficient
set of functional equations. Transforms consist of equation definition unfolding (sub-
stitution of body for call) and folding (substitution of call for body) rules. The key
idea for transformation control is to provide Zap with goals for the “shape” of inter-
mediate functions, and let Zap determine the actual function by applying a number
of lower-level transforms on its own. Rather than being a true metaprogramming
language, the intention was to remove much of the burden of applying individual
transforms manually. Goals are specified by writing a functional equation containing
pattern variables with constraints over their instantiations defined by a surrounding
“CONTEXT”. Given a goal, Zap nonprocedurally finds a sequence of unfolds, built-
in simplifications, and folds, that produce a functional equation satisfying the pattern
constraints. Rule filtering is virtually nonexistent, because the transforms used by
Zap are so few: fold and unfold. Data filtering (which equations are folded /unfolded)
occurs by defining such goals in CONTEXT's, which allow the specification of which
equations may be (un)folded, and what function (equation) names are legitimate for
use in instantiating the patterns. Transformational implementation consists of Zap
satisfying a series of externally-defined goal equations defined by a corresponding
series of CONTEXTs. Feather provides some hand-hueristics for choosing the goal
equations, but these are not expressible in Zap. One additional transform rule is the
deletion of useless named equations from a state. One achieves the effect of a complete
metaprogram by linearly reading a disk file containing CONTEXT and goal-equation
defining commands as well as equation-deleting commands. All of the CONTEXT's
defined seem to be very specific to the actual problem being transformed because goal
equations must necessarily specify an intermediate, problem-specific equation. It is
consequently difficult to believe that general-purpose CONTEXTs can be easily de-
fined. The problem seems to be that goals are defined in terms of the exact function
to be computed.
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TCL allows the entire metaprogram to be defined as a set of cooperating meth-
ods. Locales provide data-filtering, and controlled invocation of transforms provides
rule-filtering. Goals are defined in terms of ultimate problem performance. It remains
to be seen whether intermediate TCL goals must be defined in terms of function.

Glitter

The Glitter system [Fic80, Fic82, Fic85], like Zap, is used to automatically apply
mundane transformations needed for a major implementation steps. The intent is
that the designer specifies major desired effects, and Glitter applies “conditioning”
transformations as needed to make the major transformation applicable.

[t accomplishes this through use of a language for stating “transformational” (as
opposed to performance) goals such as OPTIMIZE, DEVELOP, GLOBALIZE and
REFORMULATE applied to entities existing in the current program. Glitter satisfies
transformational goals by finding methods which can achieve them. Fach Glitter
method has a goal slot (like TCL’s postcondition), a filter slot (with effect similar
to TCL’s REQUIRF(condition)), and an action slot, specifying some action which
will help achieve the goal. Posting a method causes Glitter to collect all methods
which can possibly satisfy the goal by matching goal slots (note the similarity to
the production system problem of conflict resolution). A separate knowledge base of
selection rules chooses between the candidate methods by inspecting the current state
for interesting features and voting for or against candidate methods; the method with
the most votes wins and is executed. Glitter achieved an order-of-magnitude reduction
in the number of designer selected transforms required for an implementation.

Glitter often had to query the designer about interesting features; TCL provides
access to such features via arbitrary predicates. References in Glitter to entities in the
program are by name of entity in the program; this appears to be a sort of symbolic
locator. TCL allows each method to decide for itself if it is applicable, and needs no
other mechanism to make the choice. Glitter requires the separate selection rules,
and can choose among many methods before trying any one of them.

TCL chooses candidate methods via postconditions in much the same way as
Glitter. A difference is in the vocabulary used to define the postconditions; Glitter
allows certain informally defined, approximate process predicates such as OPTIMIZFE.
We feel uncomfortable with this, and have currently chosen to avoid such predicates,
although they would be simple to add to TCL with the same sort of operational
semantics they have in Glitter. The selection rules used by Glitter to choose between
methods strike us as unneeded; they are obviously measuring something, and if what
is being measured is not process information, then some performance predicate should

be able to do the job.
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Even assuming the existence of a tool such as Glitter, there is still a need to
specify the major transforms to carry off an implementation as a metaprogram, if
nothing else, for documentation purposes.

Having considered a number of metaprogramming systems, we now turn our
attention to comparing TCL to planning systems.

4.3.4 Domain independent Nonlinear Planners

Classical domain-independent nonlinear planning is defined as the problem of
determining a set of operations (operators plus bindings) and a partial ordering over
that set specifying constraints on order of application, that changes a given initial
state into a final state with specified properties (usually termed goals) [Kam89, p. 11].
An introduction to planning can be found in [CM85]. A thorough formal analysis of
nonlinear planners is provided by Chapman [Cha87]. An excellent collection of papers
on planning in general can be found in [AHT90].

When transformation systems are characterized via performance goals, mecha-
nisms used in classical planners seem obviously relevant; both have goals stated in
roughly the same way, and the fundamental problem for both is finding a path to
reach a goal state. The notions of plans and subplans for achieving a purpose are so
natural that we find it hard to imagine a control system like TCL without them, and
indeed, even procedural metaprogramming languages such as PADDLE [Wil83] have
the idea of subplans in the form of procedure calls. TCL was not designed with the
intent of advancing the state of the art for planners, but rather with the intent of
using available planning technology in a transformational context. As a result, TCL
as a metaprogramming language is unique in connecting each plan explicitly with
its purpose as a postcondition. Another property of planning systems is the need
for replanning in the face of plan failure. Such techniques can possibly be used for
transformational maintenance; we shall return to these ideas in a later chapter, but
their use in conjunction with planners provided some of the impetus to define TCL
in a planner-like way.

The value of a nonlinear plan is simply that unnecessary sequencing constraints
are not present [Sac74, Sac77]; this is closely related to the idea of a dependency net
[Fik75, Lon78]. While we do not consider dependency nets in this thesis, we expect
them to prove valuable in enhancing the maintenance process as an aid for revising
derivation histories. We consequently assumed that TCL should be designed so that
generation of such nonlinear plans was possible. We have incorporated the notion of
nonlinear plan directly into TCL as the PLAN construct.
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Hierarchical abstract planners [Geo87, Kor87, Sac74] perform planning not only
in the target problem space, but also in abstractions of the target problem space. The
idea is that it is simpler to solve problems in a simpler space, and an abstract solution
can be used to guide the construction of a concrete one by combining solutions in
the concrete space to problems defined by pieces of the abstract solution. Usually
abstract spaces are formed by weakening the goal predicates, many times by simply
dropping obscure but assumed-easily-achieved terms. In a transformational context,
an abstract space might be formed by simply dropping some of the performance
predicates comprising (7,.s; solving a problem in this space would produce a nearly
satisfactory program. The resulting solution could perhaps be “tuned” to meet the
other performance goals; this corresponds to operating in the target problem space.
TCL does not implement strictly hierarchical planning, nor does any other transfor-
mation control system known to us. A key problem is identifying performance goals
that are “easily achieved” so that abstraction spaces can be formed.

How Transformation system control is different than Classical Planning

Transformation system control is similar, but not identical to classical Al plan-
ning. We outline the differences and how those differences affect TCL, and transfor-
mational control in general.

Scale: Many state-of-the-art planners solve problems with only tens or hundreds of
steps [CT85, Kam89, Wil88]; transformation systems must deal with tens of thousands
of steps. We see that transformation systems must handle problems that are orders of
magnitude larger than current ambitions for planners. Transformation systems must
focus their attention more tightly to prevent scale from simply overwhelming them;
thus the TCL notion of locale as a device focusing attention on a region.

Representation Change: Planners and transformation systems differ in the rep-
resentations used to describe initial and final states. For conventional planners, the
properties of the desired final state are usually stated in the same terminology which
defines the initial state, and is used to describe operators: as a set of propositions
about relations between objects in the world [Cha87, CM85]. Typical is the predicate
ON(z,y) to represent the knowledge that a block x is on top of another block y.
Planning languages for such planners use this terminology directly, and are thus com-
mitted to a particular representation. For transformation systems, the representation
of the initial state fy and the final state are likely to be very different; consider an
fo stated in functional programming terms, with the final state satistfying grorrran-
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The transformations will use terminology at the same level as the current state (as

does Draco [Nei80]).

Rather than commit TCL to representations for a specific transformation sys-
tem, we have chosen instead to APPLY the transforms by name. A consequence of
the notion of monolithic transforms are monolithic locaters. In conventional planning
systems, locaters and locales show up as constraints on operator arguments. For the
blocks world operator ON(x,y) the constraints blue(z) and y = BLOCK973 are a
locale. Use of a bound variable (say, y), in a plan corresponds to a locale expan-
sion operator (weaken the locale by dropping the constraint blue(x)). Like planning
systems, we do require TCL to represent goal predicates consistently across states.

The frame problem: Current planners and transformation systems differ with re-
spect to solutions to the frame problem: controlling the ripple effect on the world of
caused by changes to specific facts. Most planners operate under a STRIPS represen-
tation (usually limited to ground logical formulas) and STRIPS assumption [Lif86]:
only facts changed by the operators change in the world. The world is represented
by a database of currently-true relations between individual objects. Queries are al-
most always satisfied by direct inspection of the state for the relations in the queries.
This is effective because planning situations are generally involved with the physical
movements of objects, and the interesting queries are generally about how one object
is placed with respect to another. Rarely are questions asked about derived prop-
erties of configurations of objects, such as “How high is this stack of blocks?”; the
emphasis seems to be on objects as individuals. With transformation systems, it is
not convenient to represent all the possible facts in the current state; properties of
portions of the state are frequently of interest (“How fast is this subroutine?”). It is
therefore difficult to retain the STRIPS assumption for transformation systems. As a
consequence, conditional transforms may require considerable energy to validate. In
a transformation system, there doesn’t seem to be any special emphasis on objects;
rather, properties of structures are of interest. If objects do exist in transformation
system representations, they tend to be more anonymous (i.e., the operator “+” can
be considered an object, but it is freely exchangable among all its instances). The no-
tion of locale as choosing semantically interesting regions of a program for REQUIRFE
and ACHIEVE is necessary to describe structures whose properties are interesting
to extract. As planning systems become more ambitious, we expect the emphasis to
shift towards configurations of objects, and so the differences should diminish.

Our perspective is that transformation systems handle the frame problem by
having transformations map states, and use performance measures to project the state
into performance values. This is rather like Georgeff’s characterization of an extended
STRIPS representation [Geo87, page 15] with states containing basic facts, operators
manipulating only the basic facts, and planning predicates computing derived facts
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from the basic facts on demand. TCIL does this by referencing performance goals;
costs of evaluation are partly kept down by transformation system strategy of only
applying property-preserving transforms, assuring that at least one derived (very
complex) property need not be recomputed at all. In our transformational model, the
cache component of states is intended to keep cost of evaluating other predicates low,
but TCL does not specifically help here. Other planning systems such as SIPE [Wil88]
and FORBIN attempt to separate derived facts from basic facts, and provide special,
eagerly-evaluated inference rules to update derived facts, that trigger on detection of
changes to classes of relevant basic facts. The classic example is eager inference of the
derived fact =CLEAR(x) when an operator produces the new fact ON(z,y) in the
blocks world. We do not believe there is much value in this solution in transformation
systems; the scale of states is likely to make such eager inference of all possibly-
referenced derived properties unreasonable. An interesting unexplored possibility is
how to compute derived facts on demand using what remains of a previously valid
analysis based on dependency nets.

Usable Transforms/Operators: Both planners and transformation systems op-
erate with a fixed set of operators at any instant. From the point of view of the
planner and the transformation system, the set is completely arbitrary. External to
the planner and the transformation system, the usable operators are limited to those
that make sense. For a planning system, the operators allowed are those which model
some world; a blocks-world PUTON operator is not expected to explode the block.
For transformation systems, there is also the need to use just G,,uriani-preserving
transforms at any point in time.

In the face of scale, this is actually an advantage because it limits the applicable
set of transforms. Planners do not have this constraint.

Often, for planning, simple means-ends analysis can compare the current state
and goal descriptions to determine a likely candidate operator. For transformation
systems, any means-ends analysis must check the consequences of a proposed oper-
ation on the observable effect of the other performance measures, so it is harder to
determine transformations with desired effects; a theorem prover may be required to
do means-ends analysis to choose plans.

Purpose of Planning vs. Purpose of Transforming: A transformation system
and a planning system differ in their ultimate purpose. A planning system is given a
specific, possibly partial, target world configuration, and is tasked to find a sequence
of operations that when executed actually achieve that configuration; the total ending
world state is usually not of any particular interest. The emphasis on applying the
operations has to do with the need to truly move objects around in the world. A
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transformation system is not given a specific target world configuration, but only a
way to recognize a desired world. It must also find a transformation sequence, but
unlike planning, the sequence is not the point'®; the complete final state is the result
desired. This difference in emphasis seems have have had little effect on planning
versus transforming methods, to date, but see the discussion on resource management
that follows. It is the shared need to find a sequence that makes many planning
mechanisms applicable to transformational control, and thus to TCL.

Resource management: Recent work in planners includes resource management:
how to choose a plan that stays within problem-domain resource bounds such as
total time to execute a plan, consumable supplies of objects, or total operator costs.
Deadlines are handled by FORBIN [DFM90]. Consumable resource and recyclable
supplies are considered by SIPE [Wil88]. Resource management problems also appear
in the planning process itself.

In planning systems, problem domain resources constrain legitimate sequences
of operations, whereas in transformation systems problem domain resources constrain
legitimate states (programs) but not sequences of transformations. If one considers
transformation systems as planning systems that produce plans (for computing values,
i.e., programs), the problem domain resource constraints appear in the same place.

Describing and managing such problem domain resources requires explicit spec-
ification of those resources and how they are consumed, as well as providing special
mechanisms for handling resource interactions. Conventional transformation systems
do not even address the descriptive aspect of resource management. TCL handles
this indirectly by performance goals built on performance measures such as peompiesity
(a time resource measure).

Process-domain resource bounds such as total planning time or external restric-
tions on allowable sequences of operators (such as length) are just beginning to be
considered. We have avoided handling process aspects entirely in our characterization
of transformation systems and TCL, but it is clearly important in the long run to be
able to place bounds on resources consumed by a transformation system and yet still
produce an effective program product; this is the purpose of software engineering.
Because of the similarity of planning and transformation systems, we expect that
planning research on resource issues will be transferable.

103]though it is critical for maintenance purposes!
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FORBIN

The FORBIN planner [DFM90] is typical of many nonlinear planners in terms
of its representation of plans. The space of operators is broken into three parts:

o Task invocations (task name plus list of objects used by task)
o Task descriptors (expected postconditions of tasks)

o Task bodies (plan for accomplishing task)

Task descriptors and task bodies together act as the equivalent TCIL methods.
Operators (task invocations) in the abstract space seem to be poorly modeled in
FORBIN;, as they can match different task descriptors with different postconditions.

TWEAK

TWEAK [Cha87] is, among other things, a constraint-posting planner. The
size of the search space is reduced by constraining bindings on objects referenced by
operators until unique objects are selected.

The notion of “object” does not make much sense in transformation systems,
so the utility of such constraints for transformational implementation is unclear. One
might be able to apply such constraints to implementation domain-specific notions of
reusable resources, such as variables in conventional procedural languages.

SIPE

The SIPE planner [Wil88] can handle resource management, including what
amounts to cost of plan steps (a plan step that decrements a fuel resource by a plan
step dependent amount). Remaining fuel is tantamount to a process measure; a
predicate testing for positive fuel remaining would be a process predicate. Since our
model of transformation does not consider process predicates, TCL has no support
for them. SIPE’s approach might be a good place to start.

As well as providing for goal decomposition by application of methods with
postconditions, SIPE has a set of built-in critics for resolving plan bugs: parallel
interactions, phantom goals, ordering constraints, etc. TCL has no critics, but this
may be an artifact of complete versus partial states. Since critics make choices about
how to resolve plan inconsistencies, they amount to implicit control.
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SIPE provides methods, complete with bodies, called “plots”, and postcondi-
tions, much like those of TCL. A CHOICEPROCESS action corresponds to TCL’s
OR node.

SIPE also allows a human agent to interactively modify a partially constructed
plan via a graphical interface, with the intention that the human can redirect the
planner away from poor solutions, thus making the result plan more effective. Such
an interactive process is likely to be of use in a practical transformation systems.
The KIDS transformation system interface [Smi89] allows interactive specification
of individual transformation steps, but apparently not any overview or modification
of the design plan, as there is no explicit representation of that design plan. TCL
provides the basis for storing an explicit design plan (called a design history, see
Chapter 5, so it is possible to contemplate such an interactive interface.

In an attempt to avoid the frame problem, SIPE operators specify only main
effects, with causal deductive theories deducing side effects from generated main ef-
fects. SIPE’s planner ensures that main effects of parallel plans are preserved, but
does nothing for side effects. To define performance measures or predicates neces-
sary for a transformation system, one would need to use side effects in SIPE. The
fact that STPE pays little attention to those effects would make it a poor system for
implementing at transformation system.

4.4 Open Problems

Work on explicit control mechanisms for transformation systems is just get-
ting started; the earliest work we know is [Wil83]. There is little real experience
with metaprogramming, or understanding of what techniques will be the most useful.
Consequently there a number of obvious open problems:

e What performance measures are useful in practical metaprograms?
e What are useful forms for and operations on locales?
e How can one take resource costs into account in the navigation process?

e How do we acquire metaprograms?

How effective will functional metaprograms be?

e How can we combine functional metaprograms with nonprocedural metapro-
grams?

We do not address these issues further in this thesis.
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4.5 Summary

In this chapter, we defined requirements for a metaprogramming language. We
observed the utility of planning systems for metaprogramming, and described the es-
sential features of a metaprogramming language, TCL, based on those ideas. Locales
are identified as a means of focusing the attention of the transformation system. TCL
draws on ideas from planning: nonlinear plans, and method postconditions, which in
turn requires the usually-implicit G,.5; be made explicit, The value in such postcondi-
tions is that they provide a link between the actions of the method and the interesting
effects caused; this information is needed for maintenance purposes as well as con-
trolling the metaprogramming process. Examples showing the utility of TCL were
provided, including an example covering one of the few existing transformations sys-
tems that use explicit performance predicates. A comparison to navigation techniques
used by other systems was made.

Contributions:

e TCIL, a metaprogramming language that associates plans with postconditions

e A metaprogramming language consistent with the model of transformation sys-
tems based on performance predicates

The notion of locale as first class value in TCIL constraining application of
transform

e A concise set of primitives for defining TCL-like languages

An analysis of strengths and weaknesses of TCL with respect to other control
systems



Chapter 5
Design Histories

Chapter summary. A trace of the execution of the transformation system, es-
pecially that of the control mechanism, provides a design history. This is useful
for explaining how an implementation was achieved, and what role each trans-
formation played in the process. The content of a design history is examined.
These structures will guide and be modified by transformational maintenance.

Execution of the transformation system produces not only an implementation,
but also a derivation history: the sequence of transformations that were actually ap-
plied. It is important to record, for explanatory purposes, not only the chosen deriva-
tion history, but also the motivation for each transformation in the derivation history:
the design history. The design history will be of considerable use to maintainers for
understanding, and to tools for revising the constructed artifact. Many transforma-
tion systems suggest the value of a similar output [Bau77, CTHT79, Nei80, BMPP89]

but, by and large, it is not produced in a usable form. For our work, it is essential.

In this chapter, we describe the structure of both the derivation history, and
the enclosing design history, constructible by tracing the dynamic execution of TCL
metaprograms.

5.1 Kinds of Design Information and Reuse

Possession of the “design” of an artifact is essential if one wishes to make changes
to 1t. Consequently we must capture design information in some form. We must
choose a particular form.

Given a definition of a design as the justification of a transformationally con-
structed final artifact, we perceive three different possible kinds of design information:

e Derivational: Sequence of transformations applied to achieve result
e Motivational: Structured justification of derivation

o Generative: Executed to generate a sequence of transformations

125
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The derivational design information tells procedurally how the (various parts of
the) final artifact were derived, by specifying exactly the sequence in which of trans-
forms (and their locaters) were applied. Such information is essential when deter-
mining the impact of changing a transformation. It can also be used for naive replay
by simply attempting to re-execute the sequence of transformations; such replay has
the distinct advantage of being fast, in that no decisions regarding what transform
or where to apply it need be made. Such naive replay always works to some extent
because the transformations are supposedly “correctness”-preserving. Consequently, if
a transformation from a derivation history can legally be applied, the result is by defi-
nition legitimate; there is simply no guarantee that any particular replayed transform
does any useful work with respect to desiradata of the new artifact. What is missing
is from such naive replay is understanding of the role the individual transformations
play in achieving performance goals.

Generative design information contains not the design information for the arti-
fact, but the potential to generate that design information. It usually takes the form
of a metaprogram, which is really a mechanism for guiding the transformation system,
by telling what transformations to apply where; thus it generates derivational design
information. While metaprograms have the advantage that they are easily replayed,
by simply re-executing the transformation system with the same metaprogram, they
have the disadvantage of requiring that re-execution in order to rediscover the trans-
forms and locaters needed. This is a major cost we wish to avoid when performing
maintenance. In practice, transformation systems will require metaprograms to guide
them anyway, so this is certainly an attractive form.

A design plan (or design history) includes not only the derivation history, but
also structures the derivation according to the effects that the parts of the derivation
are expected to achieve. It also records, along with the structuring information,
the purpose of the particular structure in the form of subgoals. As it includes the
derivation history, it can be used for naive replay by simply attempting to execute
the derivation history. A more reasonable scheme will also re-validate the applicable
transformations according to the recorded information in the design plan to ensure
that they have the desired effect. A particular advantage of this form is that the
scope of effect of a particular transformation is more easily determined by examining
the subplan structures in which it takes part. A considerable gain over generative
(dynamic) replay comes because reuse of a design plan means that the transformation
system need not try to determine either the transforms or the locaters to use for much
of the resulting artifact. Use of a design plan has not been applied in transformation
systems to date, and is one of our major contributions. In fact, a metaprogram
can generate design plans if properly organized; a good metaprogramming system
will blur the boundary between dynamic execution of the metaprogram and and the
static design history of a particular artifact, allowing design plan repair to fall back
on parts of the metaprogram as needed. Our TCL metaprogramming language was
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designed to achieve this purpose. We will discuss the execution model for TCL in

Chapter 8.

We keep all three of these types of design information for an artifact. We
retain the derivation history because of our expectation that most design decisions
(applied transformations) will remain intact in the face of small changes. We keep
the design history so that those design decisions which appear to be unaffected by a
change can be validated to ensure they still continue to serve their intended purpose.
Lastly, we keep information about how the design history was generated as the TCL
metaprogram in case parts of the design history need to be regenerated.

5.2 Derivation Histories

A derivation history captures the precise path through the design space traversed
by a transformation system. This path is the construction information for the final
artifact. Should we wish to construct a similar artifact, a similar path is likely to be
needed. Thus considerable information is likely to be available in the current artifact’s
derivation history.

DEFINITION 5.1: Derivation History. A sequence of transformations'. We denote a
derivation history H of length k£ by H = [tfl 2 tf;k]. Alternatively, we may denote
a derivation history by a triple H = (k, HT, H*), where length(H) = k is the length
of the history, H” : 1.k — T and H* : 1.k — L, are functions which generate the
individual transforms and locaters representing the history. Thus, H = (k, HT, H*)

can be written as:
H~(1)
H7(1)

H-(2)

HE(k)
HT(2) ]

t H (k)

[t ot

We use H to represent the set containing every possible derivation history.

'Both Carbonell [Car85] and Mostow [Mos85c¢] use the term “derivational” to include the notion
of goals. We prefer to use it in the stricter sense of “derived from”, being a purely mechanical
process without motivation.
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In practice, we expect each derivation history to include both property-
preserving transforms and non-property-preserving transforms, because of the prac-
tice of constructing fo from the empty specification € (a possible instantiation of ¢
would be skip) by application of non-property-preserving transform ns [JF90, Fea89a,
Fea89b]:

o Vi
Jo=ni (iS5 (- (ni'(€)) - --)
The value of the ns lies in their use for “elaborating” an initial functional specification
to include details not covered by the initial specification; we will see these later as

functionality deltas.
An implementation fg is achieved by applying property-preserving transforms:
O f L
fa=al (@S (- (e (fo)) )
Consequently, a derivation history can have the structure:

o ) ¢
1 2 J 1 2 k
[ny', ny yeeea M, 6, Cy ,...,ck]

Current transformation systems do not produce a derivation history with this form,
but are moving in this direction; the ARIES system [JF90] captures just the evolution
of the functional specification.

5.2.1 Operations on Derivation Histories

It is convenient to perform various conventional operations on sequences forming
derivation histories, both for mathematical description and for actual manipulation.
We define the following operations:

o Length: length(H) =k if H = (k, HT, H*)

o Indexing: H[i] = tgi((?)

e Subsequence: H[i..j] = [tgi((?), ey tgi((]]))]
o Tail: rest(H,2) = H[i..length(H)]
e Subset: Hy C Hy =3i,j | Hy = Hs[z..j]

e (Concatenation:

Hy + Hy = [Hy[1], ..., Hi[length(Hy)], Ha[1], ..., Ha[length( H3)]]
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5.2.2 Compositions of Transformations

We shall have need for notation for the composition of transformations. Since
transformations are partial functions from states to states, their compositions are well
defined functions.

DEFINITION 5.2: Composition operator o : (T x L) x (T x L) — T x L. A partial
function composing two transformations:

ot =l | Vs € S: defined(12(t! (s))) D defined (t'(s)) A tlo(s) = t2(t: (s))

O

We assume that the representation of transforms and locaters is rich enough so such
a composition is well defined.

The product composition operator defines the effect of applying a derivation
history to a program.

DEFINITION 5.3: Product composition operator 11. Given a derivation history H,
the effect of the individual transformations can be composed to form a single large

transformation II(H) = H|[length(H)] o H[length(H) — 1] o --- 0 H[1] O

Thus ITI(H)(e) is the program obtained by applying the entire string of trans-
formations in the history H to e.

Usually associated with each derivation history are a program fI or a state st

from which the derivation history was initially g(ﬁn(ﬁjrated. For derivation history H
Qg

starting from e, fiT =e¢. For any H[i..;] C H, f, Il = (MH:..3])(f¥).

5.3 Design Histories

Most extant systems that attempt any kind of replay use just a derivation history
as the replayee [Gol89, MB87, SM84]. Mostow [Mos85c¢] implies this is not going to
be greatly successful as the justifications for applying the individual transformations
are lost.

The correctness of implementation of a specification must be justified somehow.
We call a design justification any structure that shows precisely how each step taken
by the implementing system is justified in terms of its ultimate effect. Such a structure
is essentially a proof that the implementation meets the specification, derived only
from the initial specification and the transformation steps used.
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5.3.1 Design Histories as Unfolded Goal/Plan Structure

In practice, such a detailed proof is expensive to construct, and of little practical
use. All that we really need is a justification of the implementation down to the level
of believably reliable steps. With the right kind of control, plan structure comes to our
rescue; proofs of the correctness of compositions of transformations can be replaced by
references to methods that achieve the effect by applying those transformations. We
can leave the proof of the method [A1190], if we have it, attached to the method itself,
thereby conserving on the size of a design justification. Even the hueristic nature of
the method need not concern us; since TCL ensures the (untrustworthy part of the)
postcondition of a method by actually testing it, we know that a successful method
achieves the desired effect in the context in which it is tried, even if it does not work
under all circumstances. This knowledge tells us that a proof of the value of the
method in this context is possible, even if we do not have the general proof; we don’t
actually want to construct such proof. The mere knowledge that it is possible is
sufficient justification for application of the method.

We can capture a useful part of such a design justification by tracing the execu-
tion of a goal-oriented metaprogram. A derivation history and the unfolded execution
of a goal-oriented metaprogram are collectively called a design history.

DEFINITION 5.4: Design History. A structure showing how goals are achieved using
plans. a

Coupled with the proofs that plans actually achieve goals, a design history provides
us with indirect justification for every transformation present in a derivation history.

A design history is shown schematically in Figure 5.1. Horizontally we see the
design states (minus the consequences @Q);, for clarity) coupled by the transformations
produced by APPLY steps; the horizontal bold arrows form a single path through
the design space as shown in Figure 3.7. Vertically we see the performance goal
decomposition by use of plans implementing method postconditions; such decompo-
sition is accomplished fundamentally by ACHIEVE steps. Each node represents a
performance goal to be achieved. A set of arcs emanating from the node represent the
decision to carry out that goal by the application of some plan; each arc represents
a step in the plan. Dashed arcs represent untried alternatives. Links across arcs
represent required sequencing of plan steps. In the interest of keeping the diagrams
uncluttered, we have adopted the diagrammatic convention that, unlike interior arcs,
each arc from leaf nodes to transformations in the derivation history represents an un-
shown node whose plan is to APPLY a transformation. To denote this, the notation
APPLY is written explicitly on the leaf arcs in this diagram, but is implicit in later
diagrams. Also for clarity, the diagram shows every step in a plan as having a gen-
erating goal by the simple artifice of attaching a postcondition of true; in a practical
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design history we do not do this. A successful REQUIRE goal or a serendipitiously
ACHIEVEd goal? is treated as if it used a plan consisting of application of an iden-
tity transform to those parts of the satisfying state that imply the achieved condition.
For our figure, (G5 : is effected by any-order execution of methods for achieving G4
and G's. G4 is accomplished by applying ¢i' and then ¢2. Goal G is accomplished by
applying ¢&; an unneeded alternative for solving G5 is shown by the dashed arrow.
Gi7 shows a 3 step PLAN with only a single ordering constraint. The vertical arrows
are drawn in time-order of trace generation; reversing them would produce the design
justification information.

A design history in which every node has an implementing plan is called com-
plete; if nodes exist which have no implementing plan, then the design history is
incomplete.

The diagram does not show non-property-preserving transforms used to con-
struct fo from e. We believe that such transforms also belong in the design history,
along with their justification. The only justification we can use for the collection of
non-property-preserving transforms is “the system analyst says this is needed”, which
is essentially the goal G}, y4riant, With an unstated but nonetheless real plan consisting
of applying all of the individual non-property-preserving transforms. Materialization
of fo directly can be modeled as TI(H,)(¢) = fo. An overview of the extended de-
sign history taking the non-property-preserving transforms into account is shown in
Figure 5.2. Such a complete design history shows how the entire specification G is de-
composed into G,yariant and G to effect the desired result, for those transformation
systems which hold G}, ,4rian: constant. The ordering established under G0 Will
depend on interaction properties of the non-property-preserving transforms [JF90].
The derivation history H. are the transformations produced by the transformation
system.

5.3.2 Design History abstract representation

We now look more closely at the representation of a design history. We use the
symbol D to represent the set of possible design histories, with D being an individual
design history. While our diagrams uniformly group a goal and a plan together as
a node, in practice the design history consists of nodes which may be either. We
call such nodes agenda items®, because each represents the potential need for work
to accomplish the effect. Each design history D is a set of individual agenda items,
designated a;.

2(alled a phantom goal in non-linear planning terminology.
3Similar nodes are generally called “task nodes” in hierarchical planning literature [Kamg9]
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Agenda items stand for instances of actions as outlined in Chapter 4. Each

agenda item contains the following information (Figure 5.3):

action(a), indicating what needs to be accomplished, being any of the TCL
actions (defined in Section 4.2.2), including APPLY, ACHIEVE, REQUIRFE,
PLAN, OR, CALL, etc. One can think of this as a pointer into a TCL method
body formed by instantiation of the method according to its parameters (@54, ).
As terminology, we characterize “an a (agenda) node” as one whose action
aspect 1s action a; thus an agenda node whose action is CALL is termed a

“CALL” node.

sons(a), being a set of subagenda items that purportedly accomplish the effect.
In the case of APPLY , the son is the applied transformation.

order(a), which is a partial order > over sons(a). If action(a) = PLAN, this is
determined by the partial order given in the PLAN step.

completed(a), which is true if the action required by this agenda item has been
accomplished, and otherwise false. For example, an agenda item will be marked
completed if action(a) = APPLY and the transformation has actually been ap-
plied, or if action(a) = ACHIEVE and a sons and its order have been estab-
lished. We say an agenda item with completed(a) = false is incomplete.

parents(a), which lists agenda items whose sons include a. We define
ancestor(a) = parent*(a). The root of the design history has an empty set
of parents.

symboltable(a), consisting of a set of triples (lv, (, dependents) each containing
a locale-variable name (/v), a locale-value ({), and a list of dependent agenda
items which use the locale-variable name in a locale expression evaluated by
action(a). This stores named locale values for reference by necessarily-following
agenda items. Nodes which always contain non-empty symboltables are those

with action LET or LOCALLE.

Agenda Item Symbol Tables

The symboltable serves two purposes:

As a mechanism for implementing LET and LOCALFE constructs

As a dependency net tracing the usage of locale values

When a locale value ¢ is bound to a variable /v by the action of agenda item a,
the triple (lv,(, ) is added to symboltable(a). For APPLY agenda items, a dummy
variable is used to capture the locater resulting from transform application. Looking
up a locale variable in the context of a particular agenda item a consists of searching
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the design history in reverse order according to order(parent(a)), continuing the
search upwards towards the root when there are no necessarily preceding brothers,
until an agenda item containing a symboltable with a matching variable name is found;
its associated value is the desired value. Whenever agenda item a’s locale expression
e resolves a variable reference to [v of agenda item a,, a locale-value dependency is
added to the dependency set for [v in node a,. This dynamically constructs a network
of locale value dependencies among the agenda items in the design history. Such a
network is shown in Figure 5.4. Note that an incomplete agenda item has an empty
symboltable. Because it would clutter design history diagrams, we do not show locale
dependencies in them.

Shared agenda items

A design history can actually take the form of a directed acyclic graph, where
certain transformations and /or methods can achieve several higher-level effects. Many
conventional optimizing transformations such as 7x + 0 = 7z both increase the
speed of the ultimate program and also decrease its size. Separate goals requiring
space optimization and time optimization can often be satisfied by a single optimizer,
as with node G5 in Figure 5.5.

5.3.3 Design Histories as Basis for Program Explanation

While we do not explore the subject, we believe the design history also provides a
considerable amount of infrastructure necessary for design explanation. A derivation
history is directly analogous to explanation in expert systems via fired-rule traces
[WHR78, BS84, Nin89] for individual transformations. The goal structure captured
by the design history corresponds more closely to the annotated derivations used in
the Explanation of Expert Systems work by [NSM85].

A key difficulty in maintenance is discovering how a program works. Such un-
derstanding is a necessary precondition to any successful attempts at modifying the
program’s function, and many times, when attempting to enhance the performance
of a program, to know where optimization can pay off. We claim that the specifica-
tion plus the design history provides much of the information necessary to describe
how the program achieves its purpose, by relating how the specification drove the
implementation.

A crucial part of understanding a program is understanding precisely its func-
tion, and knowing just how well it was designed to perform. Conventional software
implementation environments have a very strong tendency to lose even the informal
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description of the software, leaving a would-be maintainer to fall back on out-of-date
documentation, the shared knowledge of his co-workers, and the source code itself to
divine the purpose of the program. Clearly, retaining both a formal specification and
a design history would alleviate the problem of understanding the program’s purpose.

Letovsky [1.S86] describes a problem in conventional software maintenance he
called delocalized plans. A fragment of the source code at one place in the text
operates in conjunctions with other fragments of source code “far away” in program
text. Such fragments are the consequence of a coherent conceptual plan on the part
of the original implementor that has scattered by the implementation process. Such
components are encountered individually by the maintainer, who assumes that the
fragment currently under consideration has a purpose, but that abstract purpose,
and the location and the roles of related fragments in a larger context is unknown to
him, and must be rediscovered before any modifications are considered. The solution
proposed was to require comments near each code fragment implementing a plan
part to identify the plan explicitly and to “point” at distant parts of the of the plan
implementation.

A captured design history can provide precisely that, in a more formal way.
Questions of the form “what purpose does this code fragment serve?” can be answered
by tracing back through the generating transformations in the derivation history to
the portion of the functional specification which caused that fragment [DKMWS89].
Thus this information can serve as explanation of functionality in the same sense
that a rule trace can be used for expert systems [NSM85] Similarly, functionality
can be traced forward to the code fragments that implement it. Each performance
goal is tied explicitly to the plan(s) that achieve it, and each plan to the subgoals
or transformations that accomplish the plan steps; this allows traceability from the
implemented source back to the performance requirements and vice versa.

Additional information could be recorded to enhance our design history for
further explanation. We only capture design choices (Section 1.2.3), intensionally as
performance goals, and design selections, in terms of the actual plan to carry out
a goal. Information about possible design decisions, their tradeoffs, and the costs
of generating and evaluating those decisions are not captured in our framework. A
simple possibility is to store the amount of energy expended on making a particular
choice, as this can approximate the importance of the decision. Kant [DKMWS89]
marks forced decisions (those where there is only a single possible choice) specifically
to document important design decisions. We also do not capture why a possible
decision was eliminated; near misses could be valuable for detecting bugs or guiding
the design by suggesting what needs to be changed to convert the near miss into a

hit.
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Of course, using this information with the intent of modifying the implemented
program directly is inappropriate in a transformational context. Chapters 7 and 8
describe a better use for this information.

5.4 Related Work

Design histories have been proposed or used for a number of other systems.
These can be grouped roughly as follows:

e metaprograms

linear historical trace of actions

tree-structured history

nonlinear history

heirarchical plan history

goal-structured history

A metaprogram is a designated set of procedures (coded in a metaprogram-
ming language) for controlling the transformational implementation of a particular
specification. This really constitutes generative information rather than a design
history, since it is really the potential of generating a design history. However, a
metaprogram loses useful information that was is difficult to obtain: precisely how
goals were decomposed, and precisely where transformations were actually applied.
We include systems that record metaprograms in this section because they are often
used for design replay purposes. Our notion of a Design Maintenance System records
metaprograms in a library of TCIL methods.

A linear history captures the actions of the development system in the time-
sequenced order of occurrence. Linear histories have the virtue of being very easy
to capture; a simple transaction log suffices. Our derivation history is such a linear
history. When recording such a history, one should capture as much as is available
from the transformation system; in our case, we capture both the transform and
its locater. In some cases, notably in text derivations of algorithms, one sees only
the transforms listed; presumably this is because the examples are small enough so
the transform can only apply in a single place, and the authors simply leave the
locater out. We note that a purely linear history cannot record that a single action
accomplishes more than one useful effect, as does our notion of shared agenda item.

A tree-structured history can capture the actions of a system which always de-
composes a problem into nearly independent subproblems; constraint propagation
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“leaks” parameter, but not structural, information from one subproblem to another.
The history is organized as a tree of decompositions of the functional specification
represented by the root. Tree-structured histories are easy to capture, but makes
the unrealistic assumption that implementation process can always implement sub-
modules. Our design history requires a performance specification at the root, and
agenda items do allow pure decomposition (via AND and ACHEIVE), but also allow
sequencing (via PLAN).

A nonlinear history contains only the essential sequencing constraints, usually
represented by a directed graph (thus the term nonlinear); nodes in the graph rep-
resent actions, and arcs represent ordering dependencies. It is possible to construct
a nonlinear history from a linear history by performing a dependency analysis, but
it is simpler to insist the the mechanism generating the history supply the ordering
information directly. The agenda items in our design history capture the nonlinear
sequencing directly from the generating TCIL. PLAN; the convenience of such capture
was the motivation for installing this construct in TCL in the first place. We were
prevented by time from fully treating a nonlinear representation for the derivation
history, although we think this is a useful approach.

A hierarchical history captures the breakdown of the development process in
the form of hierarchical (procedural) plans. One can have hierarchical histories with
either linear or nonlinear subplans. A purely hierarchical history suffers from the same
defect as a purely procedural program: there is no explanation of intent. Another
view is that the plan is purely operational in meaning. Our design history captures
a hierarchical history via agenda items with multiple sons in a nonlinear subplan.

A goal-structured history provides motivation for a hierarchical history; in par-
ticular, it somehow provides linkage between plans used and purposes to be achieved.
As stated earlier, such goal information is critical to explaining why an action or
plan is used. Our design history provides goal structure by recording agenda item
complexes for goal achievement, containing the dynamically generated subplans of

SEQ(CALL(k,o), ACHEIVE(G,, €')).

5.4.1 Metaprograms as design histories

PADDLE: “Program Developments”

PADDLE [Wil83] Section 4.3.3 is a procedural metaprogramming language. If
the metaprogram is specific enough, it has only possible execution path for the partic-
ular program, and therefore can act as a peculiar kind of history. However, PADDLE
is also apparently intended that general transforming methods be coded in PADDLE,
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to be reused for implementing a wide range of specifications. In this case, such meth-
ods are not likely to uniquely apply, and the ability to indirectly represent a history
is weakened. We have chosen to capture both generative knowledge (in the form of
TCL methods) and an artifact-specific design history to avoid this schizophrenia.

PROSPECTRA

The PROSPECTRA transformation system system [KB88, KB89b] uses
transforms as functions over abstract syntax trees and higher-order functionals
(Section 4.3.3) as transformational control. A “development” is defined as the compo-
sition of all the transformations/functionals used; the unevaluated composition forms
a tree-like structure which we can consider to be a metaprogram. In the absence
of special transformations to combine states, such developments effectively force a
linear sequence on the transformations. Given the ability to reason about transforms
and functionals, one can perform various operations on a development, such as op-
timizing out unnecessary steps, etc; the point is that tacticals and developments in
this scheme can be modified using the same mechanisms as apply to the original
program specification. Given such reasoning mechanisms, it is possible to discover
that certain sequencing is nonessential, although this is likely to be very painful in
the face of complex functionals. No performance goals are provided, so developments
are unmotivated. It is not clear whether developments have actually been used in

PROSPECTRA.

5.4.2 Linear histories
Zap

The fundamental control concept of Zap that of a CONTEXT which determines
which transformations are carried out, and guiding transformation by pattern-directed
transformation. The operation of CONTEXTs were described in Section 4.3.3, and
can be summarized as nonprocedurally determining a sequence of transformations
to achieve a state in which selected equations have a form specified by a goal in
the current CONTEXT. The individual CONTEXT's seem to be very specific to the
program being transformed. Sequences of contexts form a metaprogram for generating
an entire implementation. Such sequences are established by constructing a script file
containing a series of CONTEXT descriptions. The individual CONTEXT can be
considered analogous to TCL methods, and the script file considered a high-level
derivation history. Zap histories thus provide low-level goals, but no goals for the
higher purpose.
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Closely related, but more formalized than Zap’s notion of design history, is that
of [Imp86]. This defines a development history as a sequence of nodes (G, R) where
(i is a goal, R is representation, and a development step consists of manipulating R
to achieve (. This captures Zap’s approach of nonprocedurally specifying what is
done at each step.

Goldberg
Goldberg [Gol89] records a linear version of a hierarchical history:

“We define a derivation history as a trace of the tactics invoked, either manually
or as part of the execution of some other tactic, together with the values of the
actual parameters passed to them.”

Goldberg’s “primitive” tactics (4.3.3) correspond to our transforms, whereas
nonprimitive tactics are a procedural version of our methods. Because arguments to
the primitive tactics are retained, Goldberg’s system effectively captures each trans-
formation ¢! including the locater. However, the relation of a high-level tactic to
the lower-level tactics that it invokes and follow it in the history is not retained; in
practice, Goldberg in fact only seems to capture invocations of the primitive tactics.
No goal information is maintained.

5.4.3 Tree-structured histories
BOGART

The BOGART system [MB87] captured the history of the top-down refinement
of a VLSI circuit functional specification. Such specifications define abstract cir-
cuit components and information flows between them, much like data flow bubbles.
Abstract components are recursively refined into subassemblies of components un-
til only primitive components remain; the refinements depend on constraints (signal
timing, etc.) from sibling components. The design history forms a tree isomorphic
to the component refinement structure; one can think of a refinement tree attached
to each component in the original specification. The advantage of this structure is
that questions about how one component is refined are decoupled from any other
component which is not a parent or descendent. A severe disadvantage is that such
histories cannot represent commonly found optimizations that are possible because of
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juxtaposition in context?, and therefore the use of such a history is likely to prevent
the construction of even a near-optimal artifact. The authors also acknowledge the
absence of performance goals in this type of history.

SINAPSE

The design histories we have discussed so far provide the design history of the
components making up a single artifact. The SINAPSE system [DKMW89], used to
synthesize finite-difference programs, keeps a tree-structured history to record design
selections (Section 1.2.3) where branches in the tree represent branches in the space of
possible implementations. In essence, this is a tree “slice” of the design space shown
in Figure 3.7, and is an implementation of almost exactly Parnas’ notion of program
families [Par76]. The tree root is the most abstract functional specification. Each
tree node represents the decision to refine some component (thus capturing a locater);
each tree arc represents the choice of a particular refinement. This particular model
also has trouble recording juxtaposition optimizations, but that is because tree nodes
are defined to be decisions to refine a component, rather than the decision to apply
some transformation. The actual history is recorded as a set of pairs representing
explicitly named design choices and explicitly named design selections for critical
design choices. Design choices for which a selection is forced, or for which the built-
in control knowledge chooses a satisfactory default result are simply not recorded.
This corresponds roughly to choosing an “important” subset of our linear derivation
history. Being able to explicitly name critical decisions and selections requires that
such decisions and selections are known well in advance of actual transformation; for
large scale implementation, we do not think this is generally possible, as as a similar
decision may apply in more than one place during a derivation, and a unique name
will not be able to differentiate between these. We think our directed acyclic graph
like structure would been more appropriate for recording this type of history.

5.4.4 Nonlinear Histories
Cheatham’s PDS

The Program Development System (PDS) [CHTS81, Che84] transformationally
constructed software in stages. Each stage either performed a type analysis and prop-
agation or applied a particular set of transformations according to transformation

4Tf component A is connected to component B, A is refined to A’ with an inverter on the output
to B, and B is refined to B’ with an inverter on the input, then a juxtaposition (called peephole
for compilers) optimization removes both inverters. This cannot be recorded in a tree-structured
history.
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application instructions (a kind of metaprogram) to a functional specification from
a previous stage. PDS recorded with each entity (stage result, and we presume,
transformation sets, application instructions, and type analyzers) the tool name and
parameters that generated it, and a version number equal to one plus the maximum
of the version number of that entity’s parents. All this information taken collectively
forms a dependency network [Fik75], or a nonlinear history of the derivation process
of the final stage. PDS did not allow stages to be sequenced by a higher level control
mechanism; TCL methods and plans allow this.

Nonlinear Planners

Nonlinear planners (NOAH [Sac77], NONLIN [Tat77], TWEAK [Cha87], intro-
duction [CM85], survey [Geo87] capture plans as networks of actions with a partial
order on the actions. When such actions are transformations (or invocations of meth-
ods), and the networks represent workable plans for implementing a specification,
then it becomes useful as a design history. The inspiration for the PLAN construct
and the organization of the agenda items in our design history was taken from this
technology. The notion of a nonlinear plan requires the notion of partial state, which
is easily obtained in problem domains where the problem is conveniently described
in terms of conjunctive normal form, and most terms are independent of one an-
other, such as the archetypical blocks world. One of the difficulties with partial state
representations and nonlinear plans is evaluating the truth of a predicate immediate
before a particular action is applied (this is known as the modal truth criterion); one
may have to enumerate an potentially exponential number of possible orderings of
previous operators to determine possible full preceding states [Cha87]. In an attempt
to avoid facing this problem in the short term, and not wishing to prematurely place
any fixed structure on the content of a state so that our transformation model would
be widely applicable, we chose to leave states as monoliths in our representation of
design history.

5.4.5 Hierarchical plan histories

Hierarchical planners (NOAH [Sac77], survey [Geo87], FORBIN [DFM90], in
contrast to component decomposition schemes, decompose high-level plans for ac-
complishing an effect into lower level plans. Essentially the lower level plans are
subroutines for achieving the effect of the higher level plans. The high-level plans are
simply names of the lower level subroutines, and therefore have only an operational
semantics. Recording the plan breakdown produces a hierarchical plan history, but
no explanation as to why the plan should should work or its purpose. TCL can gen-
erate such histories by nested PLANs or making procedural CALLs to methods. In a
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hierarchical plan history, one cannot have phantom goals simply because the notion
of goal is defined. However, our notion of shared agenda item, begin not necessarily
non-procedural in nature, is a useful addition to hierarchical plans; this allows at least
the representation of shared actions in a plan, generalizing Mostow’s [Mos85b] call
for shared design goals.

Abstract heirarchical planners (ABSTRIPS [SacT4], survey [Geo87], [Wil88])
first solve a problem in an abstracted problem space, and then instantiate a partial
solution in the problem space and attempt to fill in the details. We have not considered
carefully histories for such planners because we have not had to to consider how to
abstract the performance goals in the design history.

[Mos85b] suggests that a lattice should be used to represent an idealized design
history to allow shared design goals; we have chosen to use a directed acyclic graph
to represent shared design goals and actions.

5.4.6 Goal-structured histories
NONLIN

The NONLIN [Tat77] planner uses goals to guide its choice of plans. As the
planning process proceeds, a heirarchical task network is built up, showing how a
high-level goal is achieved by some plan, possibly having subgoals and eventually
terminating in primitive actions. The completed task network is a goal-structured
history of the planning process. An interesting structure that appears in nonlinear
goal-structured networks are phantom goals, nodes representing some desired goal
effect which is serendipitiously true, either because of the initial world state or because
of some necessarily-preceding action in the plan. One can represent the simultaneous
achievement of separate subgoals in a nonlinear network with an action followed
eventually by a phantom goal, but this places a false asymmetry into the network
and therefore the algorithms that process it. A TCL design history captures the
goal /plan relationships.

The SIPE planner [Wil88] uses essentially the same goal-structured history as
NONLIN. However, SIPE also handles abstract plans, constraints, and extended at-
tribute language used in goal expressions. The additions add considerable interesting
detail to the design history which we do not have room to discuss here.
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PRIAR

The PRIAR nonlinear planner [Kam89] starts with a plan structure essentially
identical to that produced by NONLIN, and annotates it further with walidations.
Validations exist for every precondition of leaf actions a in the form (C,aq, F, a),
meaning “The action of agenda item a; changes the world to produce condition C,
which provides necessary support for precondition F required for a to act.” Fach
validation (C,ay, F,a) implicitly requires that a; < a in the nonlinear plan ordering.
The entire set of validations (C;, a;, E, a) for F of a must have the property {C;} + E.

Each node a in the plan structure is decorated with relevant annotations of the
following types:

o [i-conditions (external effect conditions): validations provided by the subplan
under a to parts of the plan other than the subplan at a. These are the used
effects of the subplan under a.

e [J-preconditions (external preconditions) are the validations required by the
subplan under a from the rest of the plan

e P-conditions (persistence conditions) are validations that the subplan under a
must be preserved by the subplan; these correspond to protection intervals, and
are conditions that must not be disturbed by execution of the subplan under a.

Each node is also annotated with the schema which generated it, and filter conditions
(those the planner will not attempt to achieve, but will simply use if present, such as

BLOCK(B) in the blocks world).

Annotations on a node record validations used, generated, or preserved by the
subplan below that node. This allows simplified reasoning about what the entire
subplan requires, accomplishes, or must not change by virtue of simply knowing the
subplan. We think this approach has considerable promise for a Design Maintenance
System once we move away from monolithic states.

Carbonell’s “Derivation” Histories

Carbonell [Car85] suggests that a problem solving trace capture not only the
resulting goal-structured plan for a solution, but also alternatives considered and
rejected, near solutions and the cause of their failure, and references to knowledge
used. All of this information has potential value for explanation and in similar-
problem solving situations. Carbonell only sketches of how this knowledge can be
used.
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We add that costs to generate and evaluate each piece of stored information
would also be of great interest; a design selection achieved at great cost should gen-
erally be protected. Knowing the costs of certain design selections also allows better
estimates to be made in the face of a proposed change. Finally, such costs are also
a key to controlling storage costs, by using the strategy of recording only informa-
tion whose cost to acquire exceeds some threshold. Cheaply acquired information is
probably not worth the trouble to store.

5.5 Summary

This chapter has defined the notions of derivation history and design history,
discussed how such information can aid program understanding, and compared our
notion of a design history with those found in the literature. Such “understanding”
can be used by tools to install changes in the artifact described by the design history.
In the following chapters, we define how changes are specified and how those changes
can be installed into a design history.



Chapter 6
Maintenance Deltas

Chapter summary. This chapter gives a theoretical characterization of trans-
formational maintenance. The notions of maintenance delta and delta integra-
tion are defined. Classification and formal representations for each type of delta
are provided in terms of transformation system inputs.

Given an existing artifact, and a possible modification, we would like to con-
struct a new artifact having that modification. The process of deriving the modified
artifact from the existing one is traditionally termed maintenance.

Transformational maintenance is using a transformation system to aid modi-
fication of an artifact. We believe there is great value in using a transformational
perspective to guide a maintenance process. Such a perspective provides us with a
way of classifying types of changes. The change type, in turn, leads to type-specific
procedures for integrating the change into an existing artifact. Since revision of the
design history is really a prerequisite to constructing the changed artifact, we call
such a system a Design Maintenance System. Combining such procedures with the
conventional transformational implementation paradigm provides one not only with a
mechanism for implementing the maintenance process, but also the possibility using
the identical mechanism to implement an incremental design process. The integrated
process we term Incremental Fvolution.

149



150

Requested
Changes

CHAPTER 6. MAINTENANCE DELTAS

Software Engineer

A Code

o Desion Delta Revised
- & Integration Design
_ | Implementation Updated

Technologies Technologies

Support Technology

Design Information

Software
Versions

Figure 6.1:

Incremental Evolution: A system for managing change



151

An overview of the transformational maintenance process (Figure 6.1) is de-
scribed in the following procedure:

Incremental Evolution:

1. Specify an artifact formally

2. Construct a (partial) implementation using a transformation system, cap-
turing the design information (a design history) and the technological sup-
port used to construct the implementation

3. Repeatedly

(a) Determine a desired modification of the (partial) implementation

(b) Specify a formal change, called a maintenance delta, that states the
modification

c) Integrate the maintenance delta into the existing implementation sup-

g g1mp p

port technology, the design information for the artifact, and artifact
itself

The desired change may have some effect on the implementation technologies
(property-preserving transforms and methods) used by the transformation system.

The delta integration process is roughly:

Delta Integration:

1. Determine the type of the maintenance delta
2. Revise the support technology if required

3. Analyze the maintenance delta with respect to the design history, using a
type-specific process to determine which design history elements must be
dropped

4. Regenerate the remainder of the design history by re-running the transfor-
mation system

This chapter will motivate and define maintenance deltas. We will assume the
preconditions to transformational maintenance: the existence of a specification, a
(partial) implementation of an artifact, a captured design history, and some new, but
informal requirement desired for the existing artifact.
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6.1 Using Deltas to Speed
the Artifact Maintenance Process

Assume we have an implementation of a specification G:
fe = IMPLEMENT(G)

and somehow managed to formulate a desired change as a formal specification delta,
0. The effect we desire from maintenance, for some specification combining operation
Pg, 1s:

feags = IMPLEMENT(G &g 6)

We argued earlier that running IMPLEMENT transformationally is expensive; we
wish to avoid a computation of similar complexity.

Following an analogy to differential calculus, we would hope to find some in-
cremental computation to allow use to perform this computation cheaply, assuming
that the change is small. Such an approach is explored in formal differentiation
[Pai81] in which complex computations are incrementally adjusted by applying some
reduced-strength operation to a base computed value and a delta. Described in terms
relevant to our problem, the base computed value is fo = IMPLEMENT(G). A
reduced-strength operation (INTEGRATE) is found by considering the effects of the
delta-combining operation (&¢), combining the delta 6 with the original argument G,
on the complex computation (IMPLEMENT). Using this approach we could ideally
construct a function INTEGRATE : A x F — F so that:

feags = INTEGRATE(S, fa)

with cost(IMPLEMENT) >> cost(INTEGRATE). We call such a revision operation
a delta integration procedure, because it knows how to install a delta into an existing
implementation.

Given that a transformation system actually has multiple inputs, and that each
input to the transformation system affects the final implementation and design history
in a different fashion, there must be different delta integration procedures for each
input, much as with partial differentials. Given TRANSFORM (z,y,z), if input y
changes by a small value Ay, then

TRANSFORM (z,y + Ay, z) = INTEGRATE ,(Ay, TRANSFORM (x,y, z))

assuming some analog of continuity of TRANSFORM in the region near y. For
each different input z, y, or z, we need a different delta integration procedure

INTEGRATE,, INTEGRATE,, or INTEGRATE ...
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Consequently, we need to identify the types of change that are possible in a
transformational context, and must provide different integration procedures for each
type of delta.

If we were able to simply integrate a delta directly into an implementation,
without the aid of any other information, then we would have an implementation
maintenance system. This is difficult to do in practice, because one must regenerate
explanations of the roles of the parts of the program, just as in conventional main-
tenance. Rather than regenerating this design information, we insist that we simply
not lose it. Now we must also integrate the delta into the design information D as
well as the implementation, so that we are ready to handle a successor delta:

INTEGRATE ). : Ay x G % (F x D) — G x (F x D)

Just as constructing a design is most of the work involved in obtaining an
implementation, so integration of deltas into a design is most of the work involved in
revision. Consequently, we call a system that accomplishes this effect for many kinds
of deltas a Design Maintenance System.

Each integration procedure can conceptually be considered independently of
the others. In a practical Design Maintenance System, a number of delta integration
procedures will need to be run to effect a change affecting several aspects. Those
procedures should be combined so as to minimize duplication of effort. We will find
that most of the procedures consist of identifying reusable portions of the design in-
formation, stripping away the reusless portion, followed by design repair (replacing
the missing design information). The design repair can be delayed until all the inte-
gration procedures have had their chance to strip away reuseless design information.
Understanding this proviso, we will show the integration procedures separately.

6.2 Classification of change: Types of Deltas

Traditional maintenance classifies change types into perfective, adaptive and
corrective [LS80, Wed85]. Perfective changes are those that improve a software system
somehow without affecting its existing capabilities, i.e., decreasing resource utilization
costs, etc. Adaptive changes are those that allow the software to operate in a newly
changed context. Corrective changes include bug fixes.

These classifications of change are unfortunately not only informal, but they
only label the work or the end product; as classifications, they provide very little help
in actually accomplishing the desired change.
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A viewpoint based on a model of a formal transformation system classifies
changes in terms of entities involved in the transformation system, and can do so
in a formal fashion!. Our approach to discovering change classifications is to inspect
all the inputs, outputs and structures of the transformation system and to propose a
change type for each. The value in this approach is that for each delta type, there is
some hope of producing a transformation system specific procedure for handling that
type of delta by inspecting the transformation system itself, rather like a generaliza-
tion of the notion of finite differencing [Pai81, Pai86].

An earlier work [ABFP86] classified transformational changes into performance
change, environmental change (as a subset of performance change), functional change,
and design error correction, and provided informal methods for managing change on
each of these categories. This work follows in the same vein, but classifies the the
change types more carefully, and provides concrete procedures for managing change.

Obviously, the more detailed the transformation system model, the more delta
types we can propose. From the point of view of what programs can be produced
by the transformation system, proposing a delta type for each possible input is suf-
ficient to cover all possible types of deltas. Allowing changes to the other aspects
of the transformation system can at best provide additional convenience, but not
greater theoretical power. Similarly, for any particular input, one can further classify
the input values, leading to even more detailed delta characterizations; an example
of this can be found in Section 9.4.7. We have chosen a set that we think consti-
tute the major classifications, recognizing that further work may identify interesting
subclassifications.

'Balzer [Bal85b] classifies structural changes to domain models into one of 15 types. While the
changes are formal, they are only to one aspect of software construction, and so his classification is
much too limited for our purposes.



6.2. CLASSIFICATION OF CHANGE: TYPES OF DELTAS 155

We observe that a transformation system (Figure 4.1) has the following inputs:

e (7, the entire performance specification, usually composed of the parts:

— fo, the initial program satisfying Gpiicit
— (Glyest, composed of

* pure predicate specifications ¢;

* performance bound specifications via values v; ;

e P, the set of available performance value observation functions p;, indirectly
defining V;, the set of performance values

o Definitions of the various performance predicates (¢; (usually in terms of some
=)

o (' ={C,;}, the approximate set of G;-preserving transforms, especially Cj;. for
those transformation systems with fixed pj,s.

o M = {m;}, the available methods for navigating the design space

o The software engineer

A change to any of these inputs gives rise to new potential implementations.
Consequently we define a delta type for each input as shown in Figure 6.2. Any
object representing such a change we call a maintenance delta.

It is tempting to collectively call these changes “specification deltas”, but we
do not, because not all of the deltas apply to the specification; some apply to the
implementation knowledge that the transformation system possesses that is indepen-
dent of the specification. Furthermore, not all the changes to the specification GG are
actually made directly to it; some are made to the base specification represented by
the program fy, and so affect the total specification G only indirectly. We use the
term specification delta to refer to any of the specification changing operations Ag,
Ay, Ay, We use the term support delta to refer to any of operations affecting the
supporting databases used by the transformation system: A¢, Ag, Ap, Ax, Ay, Apy,

Ag.

In the balance of this section, we describe each type of delta. We give explicit
definitions for each type of delta in Section 6.4.

Since we do not know how to represent changes to software engineers, Ag, we
ignore them in this thesis. We expect this problem to remain unsolved for a very long
time.

Performance deltas (Ag) to (G are the essential specification changes. Such
changes affect the performance aspects of the desired program. They are generated
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e Specification deltas:

Ag : Change of performance (modification of specification )
A, : Change of performance bound (modifications to performance bounds v;)

Ay : Change of functionality (modifications of fy)
e Support deltas:

A¢ : Change of technology (modification of C;)

Ag : Change of performance predicate library

Ap : Change of performance measurement functions
Ay : Change of orderings »;

Ay : Change of range of performance values

A 0 Change of method library

Ag @ Change of software engineer

Figure 6.2: Types of delta induced by structure of transformation model

when a customer compares an implementation against reality, and discovers points of
difference between what was specified and the current requirements. An example of
a performance delta is a change of desired implementation language from Groprran

to Gproroc-

Performance bound deltas (A,) are a special kind of performance deltas. These
arise when some performance bound is either too loose, so the final artifact is unsuited
for its ultimate application, or too tight, and the desired artifact cannot be built at a
reasonable cost. A typical performance bound delta might be to change a peompiesity
performance bound from O(n?) to O(n). Many times, revising one performance
bound specification will require adjusting another performance bound specification;
as an example, a tighter time bound usually requires a looser space bound.

So-called functional deltas (A) occur because of the practice of providing mixed
specifications containing a base specification fy to the transformation system instead
of G eptire. Such changes are generated whenever the expected performance pys. (fo) of
the initial “specification” fy does not meet the requirements. The term “functional”
delta comes from the common practice of defining G,yariant 10 terms of poeaning, but
is not limited to this case. An example functional change would be modifying the
functional program f, = sin*(x — 3) to be sin(x + 1). The evolution transforms
of Johnson [JF90, Fea89a] are examples of functional deltas; initial specifications
(fo’s) in the form of GIST programs are modified by applying a series of built-in
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non-property-preserving transforms (Ay’s) to convert the initial fy into functional
specifications believed to better suited. In practical systems, we would expect the
bulk of changes made to be functional changes; performance tuning usually comes
after achieved functionality.

Technology deltas (Ac¢) occur when software engineers realize that a desired
transform does not exist in the library of property-preserving transforms available
to the transformation system, or when an existing one is discovered to be incor-
rect. An example of such a delta is the change from an incorrect LISP trans-
form (cons 7x t) = (list 7x) to the correct version (cons Tx nil) = (list Tx).
Incompleteness of the library is expected because of the impracticality of engineer-
ing a complete transform library in advance of use of the system [Bal85a, CHTS81].
Errors in existing transforms will occur simply because human designers are falli-
ble; many transformation systems (DRACO, REFINE, TI) allow domain engineers
to install and use transforms without verification of correctness. Errors in transforms
can even be introduced at implementation time, if one allows incremental domain
engineering as in the CIP system [BEHT87, BMPP89]; a designer can define and use
transforms whose validity he will verify later, and a transform must be retracted when
its validation later fails to go through. Even correct transforms can be invalidated
if the problem domain to which they apply changes, as is expected in the domain
engineering process [Ara88]. Rarely-used property-preserving transforms might be
retracted if the transform library gets too large to manage conveniently; this is a
tradeoff between power of transforms and the branching factor of the design space.
We consequently expect that technology changes will be necessary both during pro-
gram construction and during maintenance. However, we expect that the rate at
which technology changes are generated will drop as the transform library matures
and becomes validated; all users of the transformation system will benefit from such
changes.

Method deltas (A) capture knowledge of new implementation techniques, or
fix errors in existing techniques. An error in the action @mepyesort (Section 4.2.5),
for example, a complexity goal of O(n?) performance in locale lvy, would require a
method delta to correct it. Such changes take place for the same kind of reasons that
technology changes occur. Some methods will be applicable over a broad range of
programs, but, unlike technology changes, our expectation is that for each program
implemented, some new methods will be generated, mostly due to our inability to
encode effective heuristics for every possible program [Bal85al], and because of limits
on the completeness of the control mechanisms. Such program-specific methods we
do not expect to augment the general utility of the transformation system, and so we
would expect them to be stored with each individual design history 2.

2This implies that the transformation system has two sets of method inputs, one for generically
useful methods, and the other for methods specific to the problem at hand. We ignore this distinction
in this thesis.
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Performance predicate library deltas (Ag) change the vocabulary available to the
transformation system to express performance specifications and/or postconditions of
methods. Such changes occur when new performance predicates are added, or existing
ones are deleted due to lack of space or utility, or revised due to error. Such deltas
would occur when an incorrectly implemented predicate defining G ts—in—one—page Was

fixed.

Deltas relating to performance measurement functions Ap, changing a subsump-
tion ordering over a set of performance values A, or to the range of performance
values Ay are possible but expected to be rare; such changes indicate an error on
the part of the domain analyst defining these entities, or incorrect implementation of
these in the transformation system proper. We do not address them further in this
thesis, but we think that the techniques outlined for the other deltas can be adapted
to handle them.

There is yet another class of changes which are beyond the scope of this thesis:
changes to process performance predicates, or constraints over resources consumed
by the transformation system while constructing an artifact. First, our transforma-
tion model does not account for process costs or predicates; augmenting it to do so
would be a necessary first step. Secondly, there is a conceptual problem with process
predicates with respect to maintenance: given that an existing implementation has
achieved some process predicate, what does it mean to change that process predicate?
The resources have already been consumed. What we currently expect is that a new
process predicate will be supplied for each installed change.

6.3 What is a meaningful unit of change?

A unit of change is one for which the changed entity is well-defined, and for
which it is worth investing significant energy to install.

We distinguish between micro-changes and true change. A micro-change mod-
ifies a specification, leaving it in a possibly ill-formed state. A true change to a
specification must leave the specification well-formed, and must achieve some useful
goal desired by the designer. Micro-changes occur as a consequence of using tools that
manipulate the representation for a specification without regard to whether the ma-
nipulation leaves the specification in a consistent state with respect to the semantics
of the specification, or a useful state from the point of the designer. No effort should
be expended attempting to handle a change until a true change has been made; the
micro-changes installed by the tools must be composed® into a unit change.

3This is similar to to the problem of composing a property-preserving transform from a bundle of
non-property-preserving transforms. The difference here is that the composition of the deltas need
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Consider using a text editor to modify the textual representation of a PASCAL
program. Adding an additional test to a subroutine will likely require several editor
commands to accomplish the desired effect; the editor commands would effect the
micro changes. It is important that any system for installing changes do so only
when a complete set of such micro-changes has been made; otherwise, considerable
effort may be wasted. There is no point in compiling the program until the test
statement is completely coded and the declarations which support it are adjusted

properly.

An example from [GKS86] shows that several unit changes made to a speci-
fication may work together to accomplish a desired effect. Consider a sequence of
changes to a particular BNF production rule:

1. X::=YZ
2. X =7
3. X:=72Y

In 1., we see the original specification for a particular rule. In 2., the designer
has deleted the first component of the right hand side (this is a valid change from
the point of consistency of the “spec”). In 3., the designer inserts a new second
component. The desired result took two steps for the designer to state, neither of
which was a micro-change. Clearly, installing change immediately after the first step
is complete is inappropriate.

Secondly, there is potential ambiguity introduced: is the Y introduced at step 3.
the same Y deleted in step 1.7 Answering YES or NO leads to two different specified
changes. We see that the individual steps must compose unambiguously or the user
must specify which is intended when more than one composition is possible.

We avoid this problem by requiring specification of the entire change desired as a
single entity. Any practical system performing incremental evolution must handle the
composition of the micro-changes made to obtain the change specification we require
for our approach. It is likely that the interface to the software engineer specifying
a change will need to be made on a database-like atomic transaction basis; this is
probably necessary anyway in any environment where a number of software engineers
can simultaneously be working on a project. Johnson’s system for applying evolution
transforms [JF90] provides this effect by offering the specifier a menu of specification-
changing operations which leave the specification well-formed; collection of a unit
change is handled by requiring the specifier to explicitly invoke the transformation
system on the specification, which effectively signals the end of a transaction.

not be a property-preserving transform in any sense of the word; simply that the composition be
interesting.
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In practice, a unit change will be a number of deltas of each type assembled to
form a composite 6 to be applied:

6: {617627...76k}

There are some obvious consistency requirements for a composite delta. The
foremost is simply that no ¢; and 6; in the composite delta should conflict; it is
not meaningful for a composite delta to simultaneously delete a transform from the
transform library, and also add a method that applies that transform. We note that
independent delta types do not necessarily imply independence of deltas; a technol-
ogy delta A¢ may require method deltas Ayq for those methods using the affected
transforms. Producing a detailed model of delta consistency is beyond the scope of
this thesis.

The composite 6 is given to a composite INTEGRATE procedure to be inte-
grated into the design, the implementation, and the technology support, as shown in
Figure 6.3. The composite INTEGRATE procedure must decompose the composite
o0 into its constituent parts, shunt each part é,,,. to an appropriate INTEGRATFE,,,.,
and combine all the results. A more detailed overview of the process of break-

ing up the composite delta and shunting it to appropriate procedures was shown in
Chapter 1.

6.4 Form of Deltas

Delta types only allow us to classify. To process deltas, we need concrete def-
initions of their form. We give domain definitions for each type of delta as a set of
values, as well as the effect of “applying” individual deltas. Such definitions provides
us with a means for representing changes as formal entities, and allowing tools to
inspect the deltas for interactions with the existing specifications and artifacts.

In general, since changes to an object can be captured as a function from ob-
jects to objects, an instance of each delta type is a parameter to a revision function
appropriate to that kind of delta:

REVISE 1, @ Ayype X object — object
Given a particular delta instance ¢ of type Ay, (s) and object instance w, we define
6(w) = REVISE 1, (5)(6,w)

as a convenient notation.
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Figure 6.3: Model of transformational change
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Our current approach can be characterized as defining a fixed set of specialized
definitions for certain interesting subtypes of each change type. The subtypes are, like
the types themselves, determined by specialized techniques for handling the subclass.
An unexplored possibility is to consider using transformations to represent changes
to all input entities of the transformation system, as we have with method bodies in
the following.

6.4.1 Performance Deltas A,

For performance deltas, any representation for Ag requires that we place some
structure on GG, Fortunately, a natural structure suggests itself due to the usually-
conjunctive nature of G.piie = Gy A Gg A ---(G,: represent a conjunctive predicate
specification as a set of individual predicates GG;. Ag then becomes a means of
mapping sets (of predicates) to sets (of predicates). In practice, we expect that

specific predicates will be added, deleted, or replaced; replacement can be handled
by deletion followed by addition. We define:

Ag = powerset(G) X powerset(G)
For each 6¢ = (G5, Ga) € A
0a(G) = (G = Ge) UGy

Here, — and U stand for set difference and set union respectively.

6.4.2 Performance Bound Deltas A,

Performance bound deltas, being a special kind of performance delta, have a
more specialized form. We do not need to handle deleted performance bound goals;
those can be handled by Ag. We only need to worry about added or revised perfor-
mance bound deltas. We need to capture which performance goal 7 is being changed,
and the replacement value v; ;:
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A, = powerset(Veoyrrent ) X powerset(Veymment)
where Viyprent = {vij | pi € P Av;; € Vi }. For each 6, = (Vg, Va) € Ay

6U(G) = (G — G@) U G@ U GA

with (G5 being performance goals to delete, G5 being new performance goals, and
Gia being revised performance goals:

Go =U,, evat pilf) = vig | pi(f) = vip € G}
G@ = Uvi,]EV@{pi(fj = vi,]}
Ga = U%evA i f) = vij}

Performance bound deltas that revise provide more information than perfor-
mance deltas. This information is the relation between the revised performance bound
and the old performance bound, which is one of the following:

® Vi revised i U3, original
® Vi original iz U3, revised
® Vi revised i U3, original A U3, original tz U3, revised
® Vi revised % U3, original A U3, original %2 U3, revised

This additional information can make the integration procedure for performance
bound deltas potentially more efficient than that for performance deltas.

6.4.3 Functional Deltas Ay

Functional deltas Ay are simply maps from a specified fy to a revised f{; these
turn out to be precisely our definition of transformation, including a locater value. We
thus assume that whatever form the transformation system uses for transformations

will be used for Ay’s.
Ay={t"|teT lecL}

For each 6y € Ay:

Such deltas may be either property-preserving transforms or non-property-
preserving transforms with respect to Giuyariant, although the interesting ones are
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non-property-preserving transforms. We allow property-preserving transforms for
0¢’s only for generality. In normal practice, one does not expect to see specification
changes which have no effect; a property-preserving transform é; is probably an error
if produced by a system analyst?.

Because of limitations on what transforms are representable in a particular
system (simple tree-transforms don’t handle global changes well) it is possible that
the form used for deltas may not be able to express a desired change concisely. This is
merely a shortcoming of the chosen representation for programs and transforms, not
our methods. We shall assume that a larger-grain transform that includes a desired
precise change is always possible to construct; in extreme cases of representational
weakness, we can always fall back on total state transforms® like fo = f}.

6.4.4 Method Deltas A,

Method deltas A can affect an existing library of methods M in a number of
ways:
o add new methods
o delete existing methods
e revise existing method postconditions

e revise existing method procedure body

More detailed characterizations of method changes are possible due to their rich
internal structure (cf. discussion on TCL), such as changing parameter lists, etc., but
we shall model such changes using the above list®, as the utility of finer grain forms
is currently unclear.

4Johnson [JF90, p. 241] seems to think differently; his “evolution transforms” include “reor-
ganizing” transforms, whose purpose 1s simply to shuffle the functional specification around, and
“data-flow modifying” transforms which apparently insert buffers between agents. To us, these ap-
pear to be early implementation decisions. We can see some utility for functional deltas produced
by a software engineer.

®An interesting alternative representation is to allow A; to be sets of transformations; then
assuming that the transforms can collectively effect any set of local changes, any global change can
be represented.

SParameter list modification can be modeled by method replacement. Revising a method is a
special case of revising its postcondition and revising its procedure body.
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We define:
Aa = powerset(M) x powerset(L) x powerset(Z x Ag) x powerset(T x Ay)

with 7 being the set of possible identifiers. Fach

6/\/1 = <M697 AM@, AMpostcondition7 AMaction> € AM
has the the following parts:

o My ={(i,a,G)} is a set of methods to be added.
o Apis = {i} is a set of identifiers of methods to be deleted.
o A tpostcondition = {(1,0c)} is a set of method postconditions to be revised.

o Antaction = {(1,67)} is a set of method actions to be revised.

Since a postcondition is a performance predicate, we represent a change to a
particular postcondition as a performance delta ég or its specialization é,; each such
performance delta must be associated with a method identifier to indicate which
method postcondition is to be changed. Aptpostcondition 15 then a set of pairs (7, é¢) of
method identifiers and performance deltas.

Method bodies can be treated as a kind of program, so a change to the proce-
dure content of a method can be captured by a transformation” &;. Similarly, each
such delta must be paired with an identifier indicating to which method in the library
that it applies. Aptaction 15 a set of pairs (z,6) of method identifiers and function-
ality deltas. For this thesis, we shall ignore the possibility that method bodies as
programs require different representations than the objects the transformation sys-
tem is intended to manipulate, with the consequent problem that action transforms
might require different representations than are normally used by the transformation
system.

"This does not mean that other kinds of deltas are necessarily transformations.
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We define application of method deltas:
REVISE p 0 A X powerset(M) — powerset (M)

as

6M(M) = (M - M@) U M@ U M@postcondition U M@action U M@both

with
Mg

{(i,a,G) | i € Ame } U
{<i7a7G> | <Z76f> € AMaction} U
{<Z.7Cl7 G> | <Z76G> € AMpostcondition}

M@postcondition = { <i7a76G(G>> | <Z76G> € AMpostcondition A
<i7 6f> g AMaction A
(i,a,G)y € M }

M@action = { <Z7 5f(a>7 G> | <Z7 6f S AMaction A
<Z.7 6G> € AMpostcondition A
(1,a,G) € M }

M@both = {<176f(a)76G(G>> | <Z76G> € AMpostcondition A
<Z76f> € AMaction A
(t,a,G) € M}

While this looks formidable, all it really says is that the set of methods is
updated by deleting unwanted methods, adding new methods, and revising methods
that need to be changed.

We limit changes to method bodies to transforms rather than allowing appli-
cation of methods, to allow us some hope of eventually analyzing the effect of the
changes.

The richness of the delta for methods stems from the need to save work in the
maintenance process; we can use the additional detail to avoid re-executing parts of
the method later.

6.4.5 Technology Deltas A,

Technology deltas A are changes to the sets of available property-preserving
transforms:
Ac = powerset(V x T) x powerset(V x T)

where W = {p | p € Putrary } U{9 | 9 € Glitrary } is a set of property names for the
sets of property-preserving transforms.
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Remembering that transforms actually available to the transformation system
are packaged as sets of approximations of property-preserving sets of transforms, i.e.,

C={Cy,Cs,...C}

we define, for each 8¢ = (A, Ag) € Ac:
Se(C)y={Cl|CieC,Cl=Ci—{t|(i.tye Ag}U{t](i,t) € As}}

Notice that several sets of property-preserving transforms may be updated at once.

As a consistency requirement, technology deltas are assumed to be presented
in advance, or coupled with, method deltas that change the set of transforms used

(APPLY’d) by a method.

6.4.6 Form of other Deltas

Performance library deltas Ag, performance measurement deltas Ap,
subsumption-ordering deltas Ay and performance range deltas Ay are all similar in
structure: a list of identifiers for those which are being deleted, and (identifier, value)
pairs for those being revised. The wvalue portion of Ag and Ap consist of functions
that can be applied to states to extract qualities (booleans and performance values,
respectively). For Ay, walue is the replacement boolean function comparing two
values.

6.5 Acquiring Deltas

We do not intend to solve the problem of acquiring particular deltas for a
given program; for this work, simple possession of a desired set of deltas is suffi-
cient. However, we outline some methods for obtaining the desired changes for the
sake of completeness.

One general requirement is shared by all of the delta collectors: the ability to
inspect the aspect of the transformation system affected by the delta type. In the
case of functionality deltas, inspection of the supplied value fy by conventional pretty-
printing techniques is well understood. For libraries of methods and transforms, some
means for selecting and displaying the objects of interest needs to be provided.

Acquiring technology changes A¢ are relatively straightforward; a tool for defin-
ing new transforms to add to the transformation library, as well as designating the
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set of disallowed transformations is required. The essential parts of such a tool must
have been present when the transformation system was constructed. The CIP sys-
tem [BEH*87] uses the transformation system itself to construct new transforms, to
ensure that the constructed transforms are property-preserving transforms.

Since specifiers may wish to make arbitrary modifications Ay to functional
specifications, some means of directly entering non-property-preserving transforms
is needed; portions of the same mechanism which allows definition of new transforms
can likely be pressed into service for this. Changes to functionality could also be
captured by use of a program editor, a special tool to allow a designer to edit the
representation of a specified program fo. Structure editors for programs could pro-
vide a convenient basis [Rep84]. Upon completion of an editing session, the editor
would compose the individual edits to obtain a specific ;. The ARIES system [JF90]
provides a different approach: a designer selects “evolution transforms” from a set
of those found to be generically useful in the past, and selects bindings by pointing
with a mouse at a graphic display of the program. The selection process occurs either
by pointing at a menu item, or by specifying some desired effect on the program,
such as “promoting a type declaration” to encompass a larger type using a prede-
fined type lattice. Even for ARIES, it seems clear that a way of defining deltas not
present in the set must also exist. A poor third approach, standard in conventional
software engineering environments, is to allow arbitrary text editing of a linear text
representation of a functional specification, and to generate a functionality delta® by
comparing the resulting f) with the original fq.

An interesting possibility is the generation of functional deltas that enable
method application at some later stage of the transformation process. The idea
is that at some point during transformational implementation, a particular method
achieving some interesting performance result (via some available set of transforms)
may not quite apply. The failing part of the method postcondition may be satisfi-
able if the initial specification is changed appropriately. This obviously will generate
maintenance deltas. This is reminiscent of goal regression [Wal77], for which tools
are necessary. We shall say a little more in Chapter 7.

A difficult open problem is that of generating deltas at a abstraction level con-
sistent with the specifications given to the transformation system. Observation of
failures at the level of the running program does not necessarily translate easily into
the abstractions the specify the program.

8The transformation replay scheme used in [Gol89], and conventional software development
paradigms only allow such edits; no delta is ever generated.
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6.6 Summary

This chapter has provided:

A means for defining a complete set of maintenance deltas based on the possible
inputs of a transformation system

e Motivated the real utility of such maintenance deltas in terms of delta-type
specific integration procedures for integrating the delta into an existing imple-
mentation

e A specific list of maintenance deltas defined by our model of transformational
implementation

e Defined forms for each maintenance delta type

e Considered mechanisms for acquiring such maintenance deltas

We are now ready to consider delta-specific integration methods.



Chapter 7
Integrating Maintenance Deltas
into Derivation Histories

Chapter summary. A revised artifact can often be efficiently constructed by
reusing parts of a derivation history from an existing artifact, and integrating
a formal delta. This chapter provides procedures for technology and functional
delta integration based on commutativity in the design space. A number of
arguments for the presence of significant commutativity are considered.

An implementation is found by a difficult search of the design space for a path
leading from f; to some implementation f;. Given a maintenance delta, and a desire
for a new implementation f that takes that delta into account, we could search
the design space again, but that is expensive. If the change is relatively small, the
derivation history for fs may not be far from the correct one. We hope to reuse
significant portions of the derivation history, avoiding much of the search involved in
a pure reimplementation.

Reuse of the derivation history implies that we can somehow start the transfor-
mation system up after applying the transformations contained in the reusable deriva-
tion history. The transformation system must continue as though it had generated
those transformations itself, adding new transformations to complete an implemen-
tation and/or backtracking to repair the partial derivation history it has as needed.
While we have not discussed this, changing a transformation system to continue in
this fashion is trivial enough so we will simply assume this ability.

170
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Reuse of the derivation history implies reuse of the individual transformations.
We can do this if we can somehow validate the effect of individual transformations
with respect to the specification we are trying to implement. Such validation is only
possible if we possess the original specification, the revised specification, some notion
of their difference, and the design history, to tell us the role each transformation
played in achieving the original result. We shall pursue this approach in Chapter 8,
but we can get considerable mileage out of a first approximation:

Assume, unless it can be easily shown otherwise, that every transformation in
the original derivation history will serve a useful purpose in a new one, and attempt
to use it again.

This approximation is effective because of scale-induced commutativity in the
design space; we expect that maintenance deltas will generally only have a small
effect on our desired artifact. Most replay schemes (including ours) [MB87] make
this assumption, and then use various strategies to clean up errors induced by the
assumption.

A particularly simple scheme is naive replay. For a functional delta 6y € Ay,
naive replay sequentially tries to apply the transformations tf = H[i] from the old
derivation history H, in order of application i = 1..length(H), to the revised specifi-
cation fy = 6¢(fo). Successful application causes tf to be retained; failed application
causes that transformation to be dropped. Such a scheme has the disadvantage of
blindly trying transformations without considering the effect of the change. We pro-
vide an analogy to show the flaw: naive replay is like hammering a nail into wood-
block coordinates (5,12) to get a first implementation, deciding, next time, to move
the nail to (6,9), and then trying to hammer again at wood-block coordinates (5, 12)
simply because that worked last time. Our heart is in the right place, but the hammer
is not. We did not take into account the effect of the change on the locaters.

We have a different approach to derivation history reuse, which integrates the
maintenance delta. A key insight is based on the observation of commutative paths
in the design space; often, the derivation history can be locally rearranged without
affecting the end result. 1t is important to notice that such local rearrangements
may retain the transforms, but change the locaters, and still achieve the exact same
result. This allows us the theoretical potential to rearrange a derivation history for
our convenience into two parts: a part which we want to save, and a part which
we do not know how to save. The rearrangement is determined by the maintenance
delta. Reuse then consists of performing this rearrangement, and simply throwing
away the part we do not know how to save. We replay the saved portion H,eq,
constructing an end state $suea = HHapea(f3) for the saved portion. Finally, we turn
the transformation system back on to regenerate the tail of the derivation history from
Ssaved- In fact, we must allow the transformation system to attempt implementation
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by extending and/or revising the “reusable” part of the derivation history; so “reuse”
really consists of purging the obviously unusable portions of the derivation history.

Delta Integration then consists of the logical steps:

Adjustment of specification or support technology according to the delta
Derivation history rearrangement consistent with the delta
Truncation of rearranged derivation history

Direct reuse of truncated derivation history

A

Completion of implementation from the end point of derivation history.

In practice, these logical steps may be interwoven. The directly reused part has many
of the original transforms, with different locaters; we are reusing something more than

just the transforms, but something less than the actual transformations®.

The challenge:

e How do we know which transforms can be preserved?
e How do we change the locaters on preserved transforms?

o How do we rearrange the history before truncating?

We can determine transformations that are problematic by inspecting their interac-
tion with a given delta; the transformations that can be saved are the ones without
troublesome interactions. Rearranging consists of taking advantage of local commu-
tativity in the design space to change the order in which transforms are applied;
this will often dictate how to change the locaters. In practice, it is more efficient to
truncate the derivation history during the rearrangement process.

Without the design history, it is difficult to detect interactions of most types
of maintenance delta with individual transformations. Consequently, this chapter is
mostly about integrating A;. This is expected to be one of the more common types
of deltas used in practice; the ARIES system [JF90] for managing evolution trans-
forms implicitly assumes that Ay are the only interesting kinds of deltas, and most
current transformation systems cannot even express other types of deltas because
their performance goals are implicit. Furthermore, the basic techniques we use to
handle functional deltas will turn out to be very useful for managing the other types
of deltas. We will return to the other maintenance deltas in Chapter 8.

In this chapter, we provide methods for preserving portions of derivation history
in the face of functional deltas, a theoretical basis that justifies the method, and some
evidence that the method will work well in practice. A detailed example is provided
to illustrate the method.

Y. V. Srinivas (personal communication) has suggested that in a properly chosen topology, the
transformations are indeed preserved intact. This idea has not been pursued in detail.
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7.1 Delta Integration Overview
for Various Types of Change

We first provide an overview of certain delta integration processes. We examine
the effect of the delta integration process on the design space, emphasizing the key role
commutativity plays (refer back to Figure 3.7). For a related view of how maintenance
can take place in a conventional software construction process, see [ABFP86], in which
alternative paths through the design space are stressed, but commutativity does not
play a key role.

We consider this for the following types of delta:

o Performance: Ag
e Technology: A¢
e Functionality: Ay

This order of presentation is chosen because each one has successively larger effects
on the shape of the design space. The other support deltas have an effect on the
design space similar to that of performance deltas, so we do not examine them here.

We will formalize Ac-integration and A-integration in Sections 7.3 and 7.4.
Formalizing Ag-integration must wait until Chapter 8 where we have access to design
goals, although it is conceptually the simplest.

7.1.1 Effect of Performance Delta A

We restrict our attention to performance deltas applied to (5,4, as performance
deltas applied to Gjupariant are usually cast as functional deltas 6y, which we will
discuss later.

Figure 7.1 shows a design space, and a particular implementation fs found
traversing a path from fy of property-preserving transforms. Now, fs satisfies the
remainder of the performance predicate, G, ;. In fact, there is a set of nodes in the
design space satisfying G.s, of which fs is only one; Steier [SA89, p. 106] makes
this same observation after examining 7 different algorithm syntheses. A delta é¢ :
Grest — G ! which picks out

Lo Tesults in a new performance goal Giyyuriant N Gy

another set of implementations in the same design space.

The revision procedure in this case can retain much of the design history (i.e.,
& and cgz) if it discovers implementation fer. Transformations ¢ and ¢f* must
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States satisfying States satisfying
G rest G/Test
_— > Possible implementation path
—_— Original Implementation path
. New implementation path

¢4 Teusable because it commutes with c3

Figure 7.1: Changing performance: find new path in space



7.1. DELTA INTEGRATION OVERVIEW FOR VARIOUS TYPES OF CHANGE175

be removed from the derivation history by virtue of being the last steps leading to
the now undesirable implementation fg. The derivation history can be repaired by
choosing ¢ and ¢, leading to fe.

The repair process must somehow choose these new transformations. We first
observe that transform ¢4 can be reapplied (assuming that it eventually leads to fe)
because fo = cit (5 (f2)) = ¢ (e (f2)) implies that ¢ (f2) is well defined; we loosely
say that transforms ¢3 and ¢y commute. What is not reusable is the locater for ¢4. c?
must be generated fresh by the repair process; there is no hint of it in the derivation
history.

The interesting problems here are:

e which transformations must be dropped?

e which transformations can be preserved intact?
e which can be preserved with new locaters?

e what should be the value of the new locaters?

e when should new transformations be generated?

Making the desired change explicit (6¢) will provide us with the needed answers. We
will take this up in detail later.

The support deltas other than A¢ only affect the set of implementations pre-
sumed desirable. At the level of the design space, they are indistinguishable from the
overall effect of Ag on G5 because they only change the the performance goal G4,
so we do not consider them further.

7.1.2 Effect of A,

In Figure 7.2, we see the effect of changing the set of property-preserving trans-
forms C; usable by the transformation system. The only changes one can make to
a set are to delete elements (as shown for ¢;), and to add new elements (cs, cs).
Changing the set of property-preserving transforms changes the shape of the design
space. Old possible paths (¢§ (¢5 (¢2(f1)))) and implementations ( f&) disappear; new
potential paths (¢ (& (¢4 (f1)))) and implementations f4 satisfying the performance
predicates appear.

Even though ¢, is no longer legitimate, we can use commutativity in the original
design space with respect to ¢§ to note the potential reusability of ¢5. We do this by
noting that in the original design space, fs = 5 (¢52(f1)) = ¢ (5 (f1)), which implies
that cﬁf( f1) is well defined even in the revised design space. Consequently we can
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New technology Deleted technology
Cy = A Cy =

(cons Tz nil) = (list 7x) (cons Tz t) = (list Tz)

TN _— Possible implementation path
1'\ \: —_— Original Implementation path
N ====ccccm New implementation path

Addition to design
space enabled by
new technology

¢ reusable because it used to commute with ¢y

Figure 7.2: Changing technology: reject an old path or enable a new path
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fo = sin*(z — 3) fo = sin(z + 1)

c3 = “implement ‘squared’” ¢4 = “implement ‘sin’ ”

¢4 reusable in new space because it commutes with ¢z in old space

Figure 7.3: Changing functionality: preservation of path across design spaces

reuse transform ¢; with the new locater f;. The transformations ¢ and ¢ must be
generated as repairs, as there is no hint of them in the original derivation history.

7.1.3 Effect of Ay

Changing the functional part of a specification (é7) completely changes the
design space from that of fo to f3, in which the new implementation must be found
(Figure 7.3). In one sense, the original path is entirely irrelevant, and so an entirely
new path must be constructed in the new space. In another sense, there should be a
close analog of the original path in the new space.

!

invariant*

ANe € Co for otherwise it would

invariant’

be a non-property-preserving transform for one of the two spaces and could not be

Applying 6y changes Gpapiant to G Now, any preservable transformation
¢ must have the property ¢ € Cg.

mvariant



178  CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

preserved. For delta types which do not change G, 4r0nt, this is trivially true, and
we therefore need not check this condition. With ¢y, we must check this condition,
with one exception. If we know that Giuuriant(f) = f Zinvariant Pinvariant(fo), as
it 1s with most transformation systems, and the transforms ¢ used are all p;noariani-
preserving, then the condition is always true and we can avoid the check. We call
such a legitimately applicable transform é;-preservable.

Given a és-preservable transformation, it can be tried in the new design space.
If it doesn’t fail to apply, it is at least safe to use, even if it does not help with G-
(We remind the reader that a functional delta does not affect G.s; ).

From the beginning of the new path (f}), the old transformations can be tried
sequentially. Each transformation which is applicable can still be legally applied (as
exemplified by ¢! and cgz); transformations which no longer apply (such as cff’) can
simply be dropped (naive replay). We depart from naive replay by using a more
sophisticated technique to save inapplicable transformations: if an undesirable trans-
formation commutes with its successor, we can delay the undesirable one and attempt
to preserve the successor instead (note that ¢y (c5'(f2)) = fa = (e (f2)); this al-
lows us to propose ¢y when ¢ fails to be preservable). Once again, commutativity
rescues us.

7.2 Basic Mechanisms for Rearranging
a Derivation History

In each case where we wish to reuse a derivation history, we find it valuable to
rearrange that derivation history, leaving the net effect alone, before trying to apply
it to the new problem. This rearrangement is usually necessitated by the presence
of a transformation which will be inappropriate in a solution to the new problem.
We have shown in Section 7.1 that “commutative” transformations play a key role in
such rearrangements.
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We categorize some basic mechanisms, based on commutativity, for exiling an
unwanted transformation as follows:

e Delay: delay application of a transformation until later

e Swap: exchange the order of two transformations in a derivation history (a
special case of Delay)

e Banish: push a transformation down to the end of a history (and delete it)

These mechanisms are used in virtually all of the delta integration procedures as
removing an inappropriate transformation is a fundamental need. We will discuss
each of these in turn before turning to specific delta integration procedures.

We assume that we have an existing derivation history H = [t], .. .,tf;k], and
some predicate:
undesirabley : {1..k} — Boolean

where {1..k} C Nat. The predicate undesirable specifies which transformations in
H are no longer appropriate. (Its complement identifies transformations which are
not known to be undesirable, as opposed to known to be definitely reusable). This
predicate is the result of some analysis of a delta with respect to the derivation
history. A sample undesirable useful for pedagogical purposes designates the first
transformation as undesirable, and the rest as acceptable, i.e., undesirable(1) = true.
We will see some actual definitions of undesirable later.

7.2.1 Delaying an undesirable transformation

We delay undesirable transformations, by taking advantage of commutative
paths of the design space. The idea is to revise the original derivation history H
in such a way that the original program fi,gu ) = (H)(fI) is not affected, but
application of the undesirable transformation is delayed until a later time, and is
replaced by a transformation which is not undesirable. In this section, we characterize
an idealistic DELAY procedure to help us accomplish this. It is difficult to construct
such a general DELAY procedure in practice for a number of reasons we will outline,
but we can construct interesting specializations using related procedures called SWA P

and DEFER. Thus DELAY provides theoretical motivation.

Our ultimate intention is to delay application of undesirable transformations
until all the acceptable transformations have been applied. We do this by re-
peatedly replacing a subsequence H,.pic.q € H of transformations by another se-
quence Hpiaeement With equivalent effect, but different initial transform H,cpiacement [1]

(Figure 7.4).
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New Subhistory

Hreplacement
with delayed t;

Original
Subhistory
Hreplaced

Figure 7.4: Delaying undesirable transformation ¢!
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We define the function
DELAY : S xH x (Nat — Boolean) x Nat — Boolean x H x (Nat — Boolean)

acting on a state s}/, a derivation history H, a predicate undesirable, and an index j
such that
DELAY (s, H, undesirabler;, j) = (b, H', undesirable )

where b is a boolean signifying success in delaying H[j], H' is a derivation history
in which application of H[j] has been delayed, and undesirable ;jr marks undesirable
transformations in the revised history.

After invocation of DELAY | the following will be true:

undesirable(j) = true A b= true D
EIHfrom‘? HTBpldced? Hresh Hreplacement :

H[lj - 1] + Hreplaced + Hrest =H

H[lj - 1] + Hreplacement + Hrest =H

Sioa = T(H1j — )58

52 = I(Hoeptacea )(8j-1) = W(Hreptacement )(5j-1)

length(Hreplacement> 2 2

undesirablep/[1..j — 1] = undesirablegy(1..5 — 1)

undesirablep /() = false

undesirable[j + length( H eptacement )--length(H')] =
undesirableg[j + length(Hyeplaced )--length(H )]

If b = false, then there is no way to delay H[j] further.

The DELAY operation allows us to push a single undesirable transformation
H[j] “deeper” into H’, and temporarily allows us to avoid dealing with it. This
pushing process can technically make H[j] disappear as a recognizable entity, but
this is unimportant to us, as we are only interested in equivalence of effect. It is
entirely possible that H[j] and even H7T[j] are not present in H,epicement (We will
discuss an example of this in Section 7.2.2).

We leave open precisely how undesirabley:[j + 1..7 + length( H epiacement )] is de-
fined and/or computed. One could repeat the delta-versus-H analysis process to fill
it in, or one could very conservatively define undesirabley: to be true over this en-
tire interval, depending on the cost of the analysis. Irrespective of how H,.pigcement 15
defined, at least one of its transformations must end being marked as undesirable if
we assume that the reason that a transformation is undesirable is its effect. DELAY
doesn’t remove the problem; it merely delays it.

Because delaying a transformation does not depend on any property-
preservation effects, DELAY may be applied to any transformation in the derivation
history, including the evolution transformations between € and fo.
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A suitable H, picement may not exist, that is, it may not be possible to delay
H[j] any further in the history (i.e., b = false). We shall address this topic further
during the discussion on the BANISH procedure.

We note that the multiplicity of paths in the design space allows the DELAY
function to produce any of several possible results, of which we arbitrarily accept any
one. Future research is needed to determine how to choose a potential H,.piucement
that maximizes reusability.

Given DELAY and the predicate undesirable it is easy to construct a conceptual
procedure to rearrange a derivation history into reusable and reuseless parts:

PARTITION : S x H x (Nat — Boolean) — H x H

The procedure operates by scanning the derivation history from beginning to end,
and delays undesirable transformations until some undesirable but undelayable trans-
formation is found. Code for such a procedure is shown in Figure 7.5. Since the
procedure only applies DELAY to the history, the resulting histories, concatenated,
are an equivalent path to the original history. The procedure PARTITION cannot
fail; at worst it will produce an empty reusable history. Thus a DELAY procedure
provides us with a way to determine potentially reusable portions of a derivation
history. When attempting to reuse portions of a derivation history, one can run the
PARTITION procedure and discard the second (reuseless) result immediately; the
first result consists only of transformations that are not undesirable and are therefore
likely reusable. An obvious optimization is to simply drop the reuseless result.

In general it is difficult to construct a DELAY procedure to find a suitable
H, placement that satisfies the required properties; we consequently fall back on a num-
ber of heuristics to make this computation easier.

One complication is that even when H,. iucement theoretically exists, it may not
be practical to compute; in the face of conditional transformations, one might need
a full theorem prover to determine path equality. A simple cure is for DELAY to
declare failure if the computational energy to compute the correct answer exceeds
some arbitrary bound; we call this heuristic a conservative cutoff. Such cutoffs can
at worst prevent the PARTITION procedure from saving as much of the derivation
history as theoretically possible, but, like a conservative data flow analysis [Kil73,
ASUS6] it cannot make the result incorrect. We currently have no specific suggestions
as to how to choose the computation bound, although we are inclined to be generous
under the assumption that IMPLEMENT will likely have to generate roughly one
transformation for each one lost by PARTITION, and IMPLEMFENT is expected to

be expensive.
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Procedure PARTITION(State: StartState, DerivationHistory:History,
Boolean Function: undesirable)
Returns DerivationHistory, DerivationHistory
Declare Integer: j, Boolean: Successklag
RevisedHistory:=History
j=1
While j< length(RevisedHistory) do
If undesirable(j) Then
(SuccessFlag,RevisedHistory,undesirable):=
Delay(StartState,RevisedHistory,undesirable.j)
If —=SuccessFlag Then
% RevisedHistory[j] cannot be delayed any further
Return (RevisedHistory[1..j-1],rest(RevisedHistory,j))
Fi
Fi
j:=j+1 % Continue scanning towards end
End While
% This place not normally reached.
Return ( RevisedHistory,EmptyHistory)
End PARTITION

183

Figure 7.5: Procedure to partition derivation history using DELAY
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A second complication is the expense involved in validating the DELAY output
requirement:

H(Hreplaced )(55{> - H(Hreplacement )(55{>

A considerable portion of this cost can be traced to the involvement of the state value,
which, by assumption in the software construction environment, is likely to be bulky.
A simple heuristic to lower this cost is to compare the composed transformations
directly, avoiding use of the state, by validating:

H(Hreplaced ) - H(Hreplacement )

A failure to prove equality can fall back on a state-based computation, or simply
apply conservative cutoff.

A third complication is the necessity to find candidate arbitrary chains of trans-
formations H piacement- A related problem is justifying the transformations in a nearly
arbitrary H..piacement; validating such transformations would be much simpler if the
transforms involved were already justified by the design history for H.

A heuristic for handling both the cost of validations involving state and the
difficulty of locating arbitrary equivalent chains is to specialize DELAY to simply
exchange two sequential transforms, called swapping transformations, which proves
to be relatively easy in practice.

7.2.2 Swapping two sequential Transformations

A DELAY procedure is difficult to implement in practice. However, SWAP, a
specialization of DELAY , can often be implemented relatively easily. This procedure
exchanges the order of two sequential transformations. We define the function

SWAP : S x X x X — Boolean x X x X

such that o
SWAP(s, 14, 12) = (b, 122, 1}
with the constraint that
b= true S 12 (19 (s)) = 141 (12 (s)).

What SWAP does is to commute the transformations (b = true), possibly revising
the locaters, or complain that it cannot effect the exchange (b = false).

Given a SWAP procedure, a DELAYBYSWAP procedure can be implemented
for undesirable(j) by swapping transformations H[j] and H[j 4 1] after checking that
undesirable(j + 1) = false. We will later discuss a procedure, BANISH , that handles
the case of undesirable(j + 1) = true.
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Implementing SWAP

We do not define precisely how SWAP works. The key problem is generating
the revised locaters and testing whether the resulting transforms meet the desired
results. While we model of SWAP as British Museum algorithm, in Appendix B,
which simply enumerates locaters to try, knowledge of the structure of the program
and transform representation should allow one to build more efficient procedures
that can decide this very quickly for most transformations (as well as computing the
revised locaters), or report “Unknown” for the rest. The “Unknown” answer can be
conservatively treated as “Transformations do not commute”. We therefore think
that implementing SWA P with moderate efficiency is not difficult. Since SWAP is a
specialization of DELAY | remarks about heuristics to make the computations more
tractable equally apply.

There is a special case that is common enough so that every implementation
of SWAP is likely to handle it. When the locaters act as geometric constraints and
specify places that are “far apart”, SWAP can report success and literally just copy
the locaters, as the “distance” between the binding sites of the transforms is enough
so the transformations have no effect on one another. We expect this case to be very
common because of scale: the size of the state for interesting programs is likely to
be large, and so most randomly chosen places are “far apart”®. We believe that
dependency networks [Fik75, Lon78] are a promising way to detect this case.

We consider tree transforms to demonstrate that it is possible to implement for
SWAP for some representations, and to provide some examples. For tree transfor-
mations, locaters are geometric constraints. Two tree locaters specify places that are
far apart if the paths they select diverge, i.e., one path is not a prefix of the other.
Figure 7.6 shows two such tree transformations and their swapped equivalents. Note
that the locaters do not even change; truly the transformations swap in this case.
This is the case we expect to be common due to scale. For trees, divergent paths
for locaters ensures that the transformations commute, and so no dynamic test for
equivalence of result is needed.

When one tree transformation locater is the prefix of another, often a rather
messy but straightforward analysis of how subtrees (or leaves) are rearranged by each

?Here is an example of how the constraint aspect of locaters can be used to advantage. If one
interprets a tree path locater as “apply the transform in the only place it is valid in the selected
subtree”, then one can actually abbreviate path locaters. This saves space in a derivation history.
Under the assumption of large states, most path locaters select “places” that are far apart. Since
two transformations may be swapped if their locaters are mutually inconsistent, this abbreviation
still allows most SWA Ps to go thru as though the abbreviation had not occurred.
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Ta*x (b +7¢) =
Ta* b+ Ta* 7c@(1)

0+ 7b =
b+ 2a@(2)

2+ = Ta*x (b + Tc) =

2 + 7a@(2) C =2 Ta b+ Ta % 7cQ(1)

Figure 7.6: Swapping order of two independent sequential transformations



7.2. REARRANGING A DERIVATION HISTORY 187

Tax (Th+7c) = a4+ M —

Ta* b+ Ta* 7c@(1)

Tax (b + Tc) =
Tax b+ Tax 7c@(2)

a4+ 7 =

Figure 7.7: Swapping order of two overlapping sequential transformations

tree transform can provide most of the information needed to determine commutabil-
ity and revised locaters. Figure 7.7 shows how the leaves of one transform move the
entire effect of another.

Sometimes the applications of the transformations to be swapped overlap. When
this occurs, one may have to enumerate the places in one transform result as possible
points of application of the other transformation in order to generate candidate lo-
caters. The resulting proposed transformations may actually need to be dynamically

composed to verify equality (check that #i! ot = t? o tfl). Figure 7.8 is such a case.

Johnson [JF90] provides another concrete example of an implementation of
SWAP, for a more complex representation for programs, a semantic network. He
determines if two evolution transforms (non-property-preserving transforms) affect
one another by considering which semantic links they affect. If #; inspects only se-
mantic links of type A and affects only links of type A’, and ¢, inspects only links of
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Tax (T + 7c) = 70+ —=
Ta*xTh+ Tax 7cQ(1) M % b+ 7a@(1,2)

2+ = Ta*x (b +7¢) =

b+ 2a@(1) <> 20 % 7b + Ta + 7c@(1)
C+ C+ D
EDIEDIEDIAD
EPIEPDIEDIED

Figure 7.8: Swapping two transformations with considerable overlap
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type B and affects only links of type B’, and AN B’ = () and BN A’ = (J, then the
two transforms are independent. This type of shallow analysis is sufficient to decide if
two transformations trivially commute, because the indirect performance values are
determined only by the state, and not by the transforms or their order.

Deferring the application of a transformation

A generalization of SWAP allows the swapped transforms to also be changed.
We define:
DEFER : S x X x X — Boolean x X' x X

such that
DEFER(s,x1,23) = (b, 25, x})

with the constraint that
b= true D 2 # 21 A x9(x1(5)) = 25(x1(5))

We call x; the deferred transformation, and x the promoted transformation. The
boolean signals whether xy was successfully deferred. Either or both resulting trans-
forms may be different than the originals. This generalization can be used when
delaying the application of a domain-specific transformation past a theory morphism
(see Section 3.1.7 for definitions of these), or vice-versa, as shown in Figure 7.9.

One would expect that computing SWAP would generally be simpler than com-
puting DEFFER, because for SWAP the transforms are constant and need not be
recalculated. Since DEFER is more general than SWAP, we would prefer to use
it instead. These facts suggest that an implementation of DEFER would actually
try to perform a SWAP first, and failing that, would fall back on the more general
computation. With this in mind, we will use the term swap to refer to the action

DEFER.

We have implemented both SWAP and DEFER for conditional tree transfor-
mations (as well as the examples shown in this thesis) by using subtree-tracing and
a simple theorem prover to validate equivalence of compositions.

3Deferring an optimization past a refinement should always be relatively easy to do, because
such an optimization will always have a corresponding optimization in the lower domain, effectively
generated by applying the refinement to the optimizing transform itself. Deferring a refinement past
an optimization cannot always be done; the source domain may simply not have the vocabulary.
See the A; integration example for such a case.
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Cpush)
Ctop D Cpop> (2)
@ @ Refine by:
push = cons  top — car
pop(push(?z,72)) empty = nil  pop = cdr
o) 2D Ca D Gty
74 Ny
= Ceons ),
Clop> Cmpip) Cary  Cadid<2>
= Cedr > Ceons>
= Cz > oo il
Refine by: If

cdr(cons(?z, 7y))
push = cons  top = car Ceons ) — 72@(2)
empty = nil  pop = cdr

Figure 7.9: Deferring a transformation
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Derivation History permutations

We define permutations of derivation histories to allow us to demonstrate equiv-
alences of certain kinds of histories.

Given a derivation history H, we define a transposition of H to be those H' in
which a pair of transformations have been swapped, i.e.,

DEFINITION 7.1: transp(H). A relation H x H:

{(H,H')| H =H[1..j — 1]+ 21 + 25+ rest(H,j +2) A
J <length(H)—1 A
DEFER(H[j], H[j +1]) = (true, z1, 25)}

O

A permutation of Hy,,. is any member of the transitive closure of the transpo-
sitions of Hpse.

DEFINITION 7.2: permutation(H). Any member of the set of permutations,
HPERMS(Hy,s.) = { H' | (H, H') € transp™(Hys.) }
O

It should be obvious that every permutation H' of a derivation history Hy,,. leads to
exactly the same implementation, given the same initial state, i.e.,

TH(Hyase ) (50 ) = TI(H")(s5)

One typically applies DEFER to a pair of transformations H[j] and H[j + 1]
when undesirable(j) = true, exchanging H[j] and H[j + 1] to produce a revised H’.
The marking function undesirabley: corresponding to H' must be changed to reflect
the new position of the exchanged transformations, i.e.,

undesirableg(j +1) ifi=j
undesirabler: (1) = { undesirabley(j) ifi=74+1
undesirablep (1) ifi#gNe#j+1

We will assume that the function undesirable is revised in this fashion whenever

DEFER or SWAP is applied.
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7.2.3 Banishing a Transformation

The DEFER procedure is useful only for delaying an undesirable transformation
momentarily. To effectively get rid of it, we push the undesirable transformation as
far towards the end of the the derivation history as possible by repeated application
of the DEFFER procedure, and removal of unnecessary stumbling blocks. We call
this banishing. A transformation is unlikely to be banishable to the far end of the
derivation history as intermediate transformations may depend upon it.

We define
BANISH : H — 'H

so that it banishes the first transformation H[1] of an argument H, producing a
revised derivation history H'. We assume undesirable (1) = true, for otherwise we
would have no reason to run BANISH.

We will define BANISH in terms of an auxiliary,
BANISHO : ' H — 'H x Nat

such that if
BANISHO(H) = (H',j)

then the following are true (see Figure 7.10):

H' € HPERMS(H)

Vi:1 <i<jDundesirabley:/(i) = false

J < length(H') D undesirablep/(j) = true

Vi:jg <i<length(H'") D DEFER(H'[:], H'[i + 1)) = (false, x1, x3)

These conditions tells us that H' is truly just a rearrangement of H with the
same resulting state, that some of the undesirable effect of H[1] has been moved to
H'[j], and that all H'[k] € rest(H’, j) are dependent on H'[j]. We call the index j the
blocking point of H', because the undesirable transformation H'[j] cannot be deferred
any further in the history in a useful way.

The original point of banishing a transformation was to get rid of it. The
transformations with larger indexes than the blocking point j are all reuseless because
of their dependency on H'[j]. BANISH(O thus computes a partition of the original
derivation history. Rather than retain the reuseless portion, we can simply truncate

H' at the blocking point j computed by BANISHO(H). So we define
BANISHO(H) = (H',j) > BANISH(H) = H'[..j — 1]



7.2. REARRANGING A DERIVATION HISTORY 193

—undesireable

—undesireable

BANISH

result —undesireable

—undesireable

Blocking point

---------------------------- undesirable

' undesirable V = DEFER

BANISHO 1 !

result N 7
undesirable vV -DEFFER

undesirable vV -DEFFER

Figure 7.10: Banishing a transformation
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Rather than actually compute the partition by executing BANISH(, we imple-
ment BANISH by incrementally dropping transformations which will provably be at
or beyond the partition point. If an undesirable transformation is at the end of a
history, we can simply drop it. If the undesirable transformation can be successfully
deferred, then the promoted transformation is transferred to the reusable portion of
the history. If it cannot be successfully deferred, then the following transform is an
obstacle; we simply BANISH the obstacle, and attempt to defer the original again.
Code for BANISH is shown in Figure 7.11. The implementation lowers costs in two
ways: the derivation history shrinks by a least one transformation per call, so suc-
cessive calls are cheaper by at least unit energy, and it prevents a second banished
transform from being unnecessarily pushed into the dependents of the first, which
does not improve the reusability of the second. As long as BANISH is invoked on a
nonempty history, it cannot fail.

On close examination, one can see that BANISH combines the steps rearrange,
truncate, and replay, partly out of necessity; the internal routine DEFFER requires a
state, which is most easily obtained by replaying the previously saved transformation.

Note that BANISH does not require that any participating transforms be
property-preserving transforms. This means that BANISH can be applied to Ay
(evolution transformations) as well as property-preserving transforms selected by the
transformation system during its normal course of operation. This observation is used
by the derivation history replay mechanism in Appendix B.

BANISH deletes the first transformation and its dependents from a derivation
history. To banish a transformation H[i] in the middle of a derivation history we
can use a function BANISHATPOINT to split the history before ¢, banish from that

point, and combine the pieces. We define:
BANISHATPOINT : H x Nat — 'H
such that
BANISHATPOINT (H,:) = H[l,i — 1] + BANISH (rest(H,1))

We can thus use BANISH to get rid of any undesired transformation anywhere in an
existing derivation history, given its index.

BANISH as dependency-directed backtracking

The BANISH procedure can be useful during transformational implementa-
tion as a form of dependency directed backtracking. Conventional (chronological)
backtracking during implementation requires that the last applied transformation be



7.2. REARRANGING A DERIVATION HISTORY 195

Function BANISH(Program: CurProgram,
DerivationHistory: History)
Returns (Program,History)
% This function pushes History[1] as deep into the history as possible,
% chops the history off at that point, and returns the revised history.
% Because we always chop the history off, banishing cannot fail;
% at worst it returns an empty history.
% Complication: History[1] may conflict with History[2], so we can’t always
% immediately get rid of History[1]; we solve this by (recursively)
% getting rid of History[2] and then proceeding.
% This procedure costs O(length(History)?) to run.
Declare Program: Partiallmplementation, Boolean: SuccessFlag
Declare DerivationHistory: RevisedHistory
Declare Transformation: Promoted Transformation, Deferred Transformation
Assert length(History) > 1 % Or there’s nothing to banish!
If length(History)=1 Then Return EmptyHistory
(SuccessFlag,Deferred Transformation, Promoted Transformation):=
DeferTransformation(CurProgram,History[1],History[2])
If SuccessFlag Then
% We can move transformation to banish to History[2].
% Pretend we did that, and (eagerly) banish it from there.
(Partiallmplementation,Revised History):=
BANISH(ApplyTransformation(Promoted Transformation,CurProgram),
Deferred Transformation+rest(History,3))
Return (Partiallmplementation,Promoted Transformation+RevisedHistory)
Else
% Transformation we wish to banish is blocked by rightmost neighbor.
% So banish rightmost neighbor, shortening history, and try again.
% Safe to banish rightmost neighbor for two reasons:
% 1) This procedure can be conservative (because the Revise
%  procedure will work even if Banish throws away everything!
% 2) The rightmost neighbor depends on transformation we are trying to banish;
%  if we succeed in banishing it, the rightmost neighbor’s preconditions
%  will not be present, and the rightmost neighbor can’t be saved either.
(Partiallmplementation,Revised History):=
BANISH(ApplyTransformation(History[1],CurProgram),rest(History,2))
% ignore Partiallmplementation
Assert length(RevisedHistory)<length(History)-1
Return BANISH(CurProgram,History[1]4+RevisedHistory)
Fi
End BANISH

Figure 7.11: BANISH procedure
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undone, whether it was the essential cause of the backtracking step or not. If the
cause of backtracking can be traced to a particular transformation in the derivation
history, then that transformation can be BANISHed, thereby possibly preserving the
work (transformations) accomplished between its point of application and the end of
the derivation history. A mechanism to pinpoint a defective transformation must of
course exist; this is similar to the problem of explaining failure in machine learning.
We have not actually utilized this idea.

We note that if DEFFER simply fails whenever the locaters are close, BANISH
acts almost exactly like a dependency network [Lon78]. It is better than such a
dependency net because DEFFER can swap transformations that directly affect one
another, as long as the end result is equivalent. A dependency net can indicate,
at best, that two transformations somehow interact. In fact, dependency nets fail
for remarkably simple cases. Consider an identity transform ¢; : I(72) —72. One
can apply BANISH to a derivation history t?(t?(](](z)))) to get rid of the first
application. A dependency net will suggest that the sequential applications of #;
overlap, and are therefore dependent.

Cost to execute BANISH

The cost to banish a transform initially looks quite high. In this section, we
analyze various costs to run BANISH. We show that worst case costs are not terribly
expensive, and argue that the average costs are quite good.

We measure running time of BANISH in terms of the number of swap-attempts
(calls to DEFER). We pidgeon-hole each swap-attempt by its left-hand argument.
Each transformation in a history of length £ is swapped only with transformations
to its right, of which there are at most £ — 1. Further, a transformation x; can be
swap-attempted with z;;1 on its immediate right at most once; after such check,
the ;41 transformation is either swapped to left of x; (where it will not participate
further in the BANISH process) or x4 is banished (deleting it from the remaining
history, so it can’t be swap-attempted with any transformation, let alone x;, again).
So 1 can participate in at most k£ — 1 swap-attempts; z, with at most &£ — 2, and
x_1 with at most 1 swap-attempts. The number of swap-attempts is then at most
Sk —id = ﬁk;le Since (except for trivial cases) there is one swap-attempt per
call to banish, the cost to banish must be at most O(k?).

If we have a design space in which every decision depends on every other decision
(i.e, highly constrained) the cost of banishment is O(k — 1): we attempt to swap
each transformation its right-hand neighbor, failing each time, and then the history
is truncated. If we have an extremely commutative design space (close to what
we expect in practice) then the cost of banishment is also O(k — 1): the offending
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transformation is repeatedly swapped with its right-hand neighbor until it reaches the
end of the derivation history, and is then truncated. We speculate that a dependency
network would lower the average cost in this case to O(1).

We defined costs in terms of history length and the number of swap-attempts.
Each swap-attempt can be expensive in its own right if the transforms are complex. If
executing DEFFER on a particular pair of transformations should exceed a predefined
threshold, one can conservatively assume that they do not commute. If this happens
often, then the cost to banish will drop as more of the history is lost; one pays
the price of losing that potentially preservable history later when the conventional
transformation system will have that much more work to do reconstructing a new tail
for the derivation history.

7.2.4 Banishing batches of transformations

Sometimes we can simultaneously identify a number of transformations in a
derivation history H which we are sure are undesirable. In this case, we can save
effort by banishing in a batch. The idea is simple: mark each H[i] that is undesirable
in H; then scan H from left to right, looking for a marked transformation. For each
marked transformation, apply the BANISH procedure, with one additional proviso:
before attempting a swap, if the righthand transformation is also marked, first banish
it. Marks must obviously swap when their corresponding transformations swap. We
call this process BATCHBANISH (Figure 7.2.4). The savings occur in that no trans-
formation with index 7 in the batch is bubbled-right into a block of transformations
which are dependent on some later to-be-banished transformation with index j > 2.

We define
BATCHBANISH : 'H x (Nat — Boolean) — H

in terms of an auxiliary function BATCHBANISH(, paralleling the definition
BANISH. We construct BATCHBANISHO to have the same effect as PARTITION.
By dropping the tail of the derivation history produced by BATCHBANISHO, we
obtain BATCHBANISH:

BATCHBANISHO(H) = (H',j) > BATCHBANISH(H) = H'[1..j — 1]
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We define
BATCHBANISHO : 'H x (Nat — Boolean) — H x Nat
such that BATCHBANISHO(H, undesirable) = (H',j) satisfies:

H' € HPERMS(H)

Vi1 <i<j D undesirabley/(i) = false

J < length(H') D undesirabley:/(j) = true

Vi:j <i<length(H'") D DEFER(H'[i], H'[i + 1]) = (false, x1,22)V
undesirablep: (1 + 1) = true

As with BANISHO, the index j is the blocking point of some undesired transforma-
tion, with the additional provision that all the undesired transformations and their
dependents are at or beyond the blocking point. Truncating at the blocking point
throws away all the unwanted transformations and dependents. The implementation

of BATCHBANISH truncates incrementally, like BANISH .

The cost to perform BATCHBANISH on a derivation history of length £ is
identical to the cost to perform BANISH. Remembering that that we counted
swap-attempts for BANISH, if we simply treat a swap-attempt on H[i| as also in-
cluding a check for undesirable(i + 1), then the code structure for BANISH and
BATCHBANISH become identical, and thus have identical worst-case running times
of O(k*). Since we expect more than one undesirable transformation to be present
duringa BATCHBANISH , its average costs should be a little higher than BANISHing
just a single transformation, but it is clear that one should BATCHBANISH rather
than BANISH when possible. The lower bound on the cost to BATCHBANISH
is obviously O(k) because the derivation history must be scanned to find marked
transformations. If one has a small list of undesirable transformations and uses a
dependency net, it may be more efficient to individually BANISH.

The relative efficiency of BATCHBANISH over individual BANISH suggests
that banishing transformations should be delayed as long as possible in order for
the batch to grow to maximum size, and then applying BATCHBANISH. This
delaying hueristic accounts for the order in which deltas are processed in Figure 1.13.
Functional deltas are processed last because they must be applied to a clean derivation
history.

When producing a monolithic derivation history free of undesireable transforma-
tions, BATCHBANISH seems reasonable. Under circumstances in which the elements
of a derivation history are enumerated in order, and those elements may indirectly
force marking other elements as undesirable (see Section 7.4 for an example of this), it
may be better to banish lazily. By this we mean deferring application of an undesirable
transformation as little as possible to reveal a potentially reusable transformation, in
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Function BATCHBANISH(Program: CurProgram,DerivationHistory: History,
Returns (Program,DerivationHistory)
% This function delays application of marked (undesirable) transformations
% as long as possible, chops the history off at the earliest delayed transformation,
% and returns the revised history.
% Because we always chop the history off, batchbanishing cannot fail;
% at worst it returns an empty history.
% This procedure costs O(length(History)?) to run.
Declare Program: Partiallmplementation, Boolean: SuccessFlag
Declare DerivationHistory: RevisedHistory
Declare Transformation: Promoted Transformation, Deferred Transformation
If length(History)=0 Then Return (CurProgram,EmptyHistory)
If —undesirable(History[1]) Then
(Partiallmplementation,Revised History):=
BATCHBANISH(ApplyTransformation(History[1],CurProgram),rest(History,2))
Return (Partiallmplementation,History[1]4RevisedHistory)
Fi
% History[1] is undesirable, delay its application
If length(History)=1 Then Return (CurProgram,EmptyHistory)
If ~undesirable(History[2]) Then
(SuccessFlag,Deferred Transformation, Promoted Transformation):=
DeferTransformation(CurProgram,History[1],History[2])
If SuccessFlag Then
% We can move undesirable transformation to History[2].
% Pretend we did that, and (eagerly) banish it from there.
undesirable( Deferred Transformation ):=true
(Partiallmplementation,Revised History):=
BATCHBANISH(ApplyTransformation(Promoted Transformation,CurProgram),
Deferred Transformation+rest(History,3))
Return (Partiallmplementation,Promoted Transformation+RevisedHistory)
Else undesirable(History|[2]):=true
Fi
Fi
% Transformation we wish to banish is blocked by rightmost, undesirable, neighbor.
% So banish rightmost neighbor, shortening history, and try again.
(Partiallmplementation,Revised History):=
BATCHBANISH(ApplyTransformation(History[1],CurProgram ),rest(History,2))
% ignore Partiallmplementation
Assert length(RevisedHistory)<length(History)-1
Return BATCHBANISH(CurProgram,History[1]4+RevisedHistory)
End BATCHBANISH

Figure 7.12: Batch Banish procedure
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an effort to allow the supply of undesirable transformations to grow as large as pos-
sible in the tail of the derivation history before processing the tail. Procedures to
accomplish this are shown in Figure 7.2.4.

7.3 Integration of Technology Deltas A;

We now have enough mechanisms defined to integrate Ac¢s into a derivation
history. Our original approximation for reusing a derivation history was to assume
that all transformations were reusable unless easily shown otherwise. Technology
deltas directly provide information to the effect that certain transforms, and therefore
their derivative transformations, are no longer valid. Remembering that a 6 =
(Ag,Ag), we see a direct identification of transforms which are no longer legitimate
to use: A5. The procedure is straightforward:

1. Mark transformation H[i] = #' as undesirable in the existing derivation history

if (i,t) € Ag.

2. Apply BATCHBANISH to remove the undesirable transformations and any
dependencies thereof, producing a truncated history H,,.q as well as sg40.0 =

H(Hsaved7 35{)
3. Update the set of usable transforms by computing C;,,.., = dc(Clitrary )

4. Restart the transformation system at state s, with H’. This provides an
opportunity to use the new transforms represented by Ag.

5. Output resulting derivation history H’ and fH.

Restarting the transformation system with H,,eq allows it to backtrack (perhaps
using BANISH or BATCHBANISH ) and revise other parts of Hyyeq if needed. Such
backtracking may be required as our scheme for integrating é¢ is conservative; we only
remove transformations which are obviously bad. None of the information provided
by a é¢ can assure us that the program specification is achievable via H,yeq-
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Function FNUMERATEHISTORY ()
returns boolean, transformation
% Produces next derivation history element on each call
% Lazily banishes undesirable transformations as they are encountered.
declare global DerivationHistory: H, integer: nexzt, program: NextProgram
next := next + 1 % advance history scan pointer on each call
if next > length( H ) then return (false, dummy)
if —undesirable( H[next]) then
NextProgram:=ApplyTransformation( H [next],NextProgram )
return (true, H[next])
else
H := H[l..next — 1] + BANISHLAZY (NextProgram,rest( H, next))
if next > length( H ) then return (false, dummy)
NextProgram:=ApplyTransformation( H [next],NextProgram )
return (true, H[nezxt])

end FNUMFERATFEHISTORY

Function BANISHLAZY (Program:CurProgram,DerivationHistory:H')
returns DerivationHistory
% Returns H' : length(H') = 0 or undesirable( H'[1]) = false
declare program: NextProgram
assert length(H) > 0 and undesirable( H[1]) = true
if length( H) = 1 then return emptyhistory
% Try to defer H[1] until after H[2]
NextProgram=ApplyTransformation( H[1],CurProgram)
if undesirable( H[2]) = false
then H':= rest(H,?2)
else H':= BANISHLAZY (NextProgram,rest(H,2)) fi
loop
if length( H') = 0 then return emptyhistory
assert undesirable( H'[1]) = false
(successflag, 2, 2%) = DEFER(CurProgram,H (1], H'[1])
undesirable( H'[1]) := true % mark H'[1] as (transitively) undesirable
if successflag then return 2} + 2/, + rest(H',2)
H' := BANISHLAZY (NextProgram,H')
endloop
end BANISHLAZY

Figure 7.13: Banish Lazily procedure
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The following process is germane:

Procedure IntegrateAc(StartState:State, DerivationHistory:History, A¢ : ¢)
Returns (State,History,State)
Declare RevisedHistory,AdditionalHistory: History, EndState:State
for i :=1 to length(H)
if H7[i] € 6.A¢
then undesirable( H[i]) = true
endfor
(RevisedHistory,EndState):=BatchBanish(StartState,DerivationHistory)
Clivrary =6 (Clitrary)
(RevisedHistory,Implementation):=ImplementContinue(Endstate, RevisedHistory)
Return (StartState,RevisedHistory,Implementation)
End IntegrateA¢

In practice, we delay restarting the transformation system until we have also
adjusted the derivation history to account for the other deltas present in a composite

delta. This allows use of a single pass of as BATCHBANISH to remove all of the

undesirable transformations.
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7.4 Integration of Functional Deltas A,

We have so far seen how to revise a derivation history when we have been told,
directly or indirectly, which transformations simply cannot be kept. Functionality
deltas provide us with the opportunity to directly inspect interactions between in-
dividual transformations in the derivation history and some desired functionality
change*. When an existing transformation interferes with the desired change, we
can simply banish the offending transformation. When a transformation does not
interfere, we preserve that transformation, i.e., save it for use in the revised deriva-
tion history. We scan the original derivation history from beginning to end, checking
the delta for interference with each transformation. When such a checking process is
complete, the remaining derivation history is compatible with the desired delta; all
we need to do is apply the delta and finish the implementation.

What we will attempt to do is to preserve as much of the derivation history
as possible. The essential idea is to “push” the delta through the derivation history,
from beginning to end, either preserving or banishing as we go.

We start with a functional delta dg, a functional specification fy, and a derivation
history H. We want to produce a

DEFINITION 7.3: Ladder. A triple (Hcusaie s Hrevised, Hs) with the property:

\V/l S length(HTwmble) : H(HTemsed[1..'i])(H5[1](f0)) == H(g[l —|— 1](H(HT€UMM€[1..'i])(f0))

O

Hs[1] will contain &g, the given és. We call this a ladder because of the resemblance
of diagrams of this object to a ladder, with Hj[:] forming the rungs and H,.,su1.
and H,.yiseq forming the left and right sides of the ladder, respectively (Figure 7.14).
The ladder component H ... must be a prefix of a member of HPERMS(H). The
dashed arrows shown at the end of H,. s are the transformations banished from
H because of their conflict with the effect of 6y; H,.ysasie plus the dashed arrows
(H yearranged ) is @ member of HPERMS(H).

If we can construct a ladder, then H,, 5.4 is a derivation history for for 6¢(so). If
all the members of HZ _ .. are property-preserving transforms, then all the members
of Hyeyisea are also, and so the state s.,0 = H(Hevisea )(64(80))) is a correct partial
implementation of d;(sg). We can pass this derivation history plus the state s.,4 to

the transformation system for completion. Thus integrating a Ay can be accomplished

4Should a software engineer wish to insert a property-preserving transform in the middle of an
existing derivation history, the Ay integration technique can be used without significant change.
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Original History Ladder

preserved .-

. .’*.banished

A és form H;

H Hreusable Hrevised

Figure 7.14: Producing a ladder from a A;
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by building a ladder. In practice, we don’t actually build the ladder as a monolith;
it serves as a conceptual device. Production of H,.,;s.q is sufficient.

We can form the ladder incrementally by an iterative procedure which scans the
original derivation history H. At each step, a ¢; derived from previous steps causes
either the transformation H[i] to be banished, or to be preserved by forming a new
rung of ladder. Failure to preserve transformation H|[7] is the signal that H[i] must

be banished.

Let us consider how a rung is formed.

7.4.1 Preserving single transformations

The starting condition when generating the £+ 1th rung shown in Figure 7.15A.
To be successful, we must actually find two transformations: one to output to H,cpiseq,
and another to serve as 6541 for the next step. Fig 7.15B shows a plethora of possi-
bilities. How can we choose such a pair? We note that 6, = ¢7" for some arbitrary
transform ¢; with locater m.

The first constraint is that the transform HZ . _.[k] applied to 6z(fx) must gener-
ally be a property-preserving transform; after all, it will form part of a new derivation
history and therefore must act as though the transformation system generated it. If
we can find ¢;/, (', m’ such that t;r}/(cf(fk)) = cfl(t;”(fk) = fi4q (see Fig 7.15C), then
the new functionality desired, f; = 6x(fk), is preserved by application of ¢’ because ¢;
is, by definition, a property-preserving transform. We can then safely reuse ¢; in a new
derivation history for éx(fi). Because a derivation history may contain non-property-
preserving transforms, we relax the requirement to HZ [kle C;D> HL,, k] € C;,

reusable revised
usually for C; = Cippiicit, chosen by the transformation system invariant.

A second constraint on HZ . . [k] is that it ideally should be t = HZL .. [k];
this constraint comes not from anything in the derivation history, but from a desire
to be able to continue using the justification from the design history for ¢; we will

discuss this further in Chapter 8. So we need only pick a new locater.

The last constraint comes from the ladder itself. If H,.,;5.q is to truly be anal-
ogous to H,.ysapie, then there must be a constructive analogy between each parallel
state generated by the derivation histories. Consequently, we require that:
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B: Possible Choices for 641 and

5k:t;n

7
6k_|_1 : t;r}

C: Best Choice for d341

Figure 7.15: Preserving a transformation
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Hrevised [F](01(fr)) = Ope1(H reusanie [K](fr))

We interpret this as “applying an implementing (technology) transform to the
changed state is the same as implementing the state, and then applying a change to
it.”

We define a function, PRESERVE . to form a rung and push a delta through it:
PRESERVE : powerset(T) x § x X x X — Boolean x X x X

such that
PRESERVE(C, s, 14, 17) = (b, t5,t"")

92y bgo g RSN
has the properties:
b= true D t?l(tf(S)) = tf,/(t;”(s))
t,eCDOtypel

Failure to PRESERVE a transformation is signaled by returning b = false. We banish
transformations that cannot be preserved. Since banishing also truncates transforma-
tions dependent on the unpreservable one, we will not have to deal with complications.
We do not hunt for substitutions or long chains of other transformations, because we
want to preserve transforms that can be traced back to APPLY steps in methods;
more on this in Chapter 8.

Implementing PRESERVE

Similar to the discussion about implementing SWAP in Section 7.2.2, we do
not provide precise details on how to implement PRESERVE, because they depend
on the transformation system, its representation, and the sets of property-preserving
transforms. Much of the discussion in that section applies. In particular the following
points are still relevant:

e A theorem prover is necessary in general
e Conservative cutoff can conservatively signal failure of PRESERVE

e Having proposed a pair of resulting transformations, it is often sufficient for
validation purposes to compare compositions of the transformations rather than
comparing applications of the proposed transformations to states, i.e., simply
to check that: t;r}l otf =10 7

e Locaters which are “far apart” are common and provide a special case which is
easily implemented, by simply returning the argument transformations as the
results.



208 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

It may be that there is more than one way to produce resulting transforma-
tions satisfying PRESERVE. Carrying t; through intact (i.e., ¢ = 1;) is one way
to eliminate multiple results, motivated by possible reuse of design history justifica-
tions. Similarly, one wants to keep ?,,; as small as possible; gratuitous expansions of
the delta simply make computations of following ladder rungs slower. We conjecture
that implementing PRESERVE as a pushout (if it exists) in the underlying category
of transformations is probably best, since that places the fewest constraints on f; ;.
If fi,, is a pushout, it implies that pinyiicit (fils1) Zimpiicit Pimpiicit(f141) for any fi' 4
which is not the pushout. Fewer constraints on intermediate states mean fewer com-
mitments to carry through to an implementation, and therefore probably a shorter
final derivation history.

Statistically, the revised 6 is equal to the original §. Sometimest,, # .., i.e., the
delta transform changes. This is no cause for concern; the System Analyst will never
be confused by it because he will never see such intermediate deltas, and the Software
Engineer will see a delta which is relevant to the program f;,1 he is inspecting.

We must still validate that each preserved transformation still achieves some
desired effect, but that is a topic for Chapter 8. For this chapter, mere generation is
sufficient.

We provide some examples of the PRESERVE step with tree transforms. We do
not show the common case, where the locaters of the transformation to be preserved
and the delta do not overlap. When the locaters select nearby regions, as with SWAP
implemented for trees, an analysis of how the overlapping transformations rearrange
their subtrees can lead to simple proposals for how to revise the locaters. Figure 7.16
shows a case in which preserving the transformation causes the application point of
the delta to be moved; the delta’s locater is revised accordingly. Figure 7.17 shows
the opposite case; the delta moves the point of application of the transformation to
be preserved, causing revision of the locater of the preserved transform.

Building an efficient implementation of a specification is fundamentally accom-
plished by spreading information. This effect can be seen in Figure 7.18, in which
the delta is spread out by application of the transformation to be preserved. This
suggests that the deltas forming ladder rungs are likely to grow monotonically in size
as we move down the derivation history, perhaps to the point where the delta can
become significant in size relative to f;. This can be handled, if necessary, by the sim-
ple device of forcing PRESERVE to fail whenever the delta becomes inconveniently
large. Considering that the transformations to be preserved are likely to stay small,
we think that manufacturing ladder rungs even with large deltas should be cheaper
than trying to regenerate those transformations.
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C+ 90 C+ O 0
1 6:7¢ = 0Q(1,2)
C+ oD — oD
1 2
o> D Ce D 0D
(1,2)

(Ta+ )+ = (Ta+ )47 =
Ta+ (7b+ 7c)@() Ta+ (b4 7¢)@Q()

Figure 7.16: Preserving transformation intact by revising delta locater
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T2 4+0 =
T2 @(1)

& &
8 raxTr = T2 /6Q()
o> = oD

Figure 7.17: Preserving a transform by revising its locater

e+ 0= 72Q(2)
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C* D ) é:7a+3=

1 2 b+(1—’*a)@
M C+ >0 o <
Ce D> 30 e D> =2

(Ta+7)*7c = (7a—|—7b)*7c:>
TaxTc+ Th* 7c@() 7a*7c—|—7b*7c@<>

axTc+ 3+ e =
*%—I—(l—"a)*"c@

Figure 7.18: Growth of delta by information spreading
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@ 6 empty —

Crmsh
2 push(s, empty)@Q(2)
Cmptyd = Cpush >
(2)
Ce D Cme)

push = cons push = cons
top = car top — car

empty — nil empty — nil
pop = cdr pop = cdr

Ceons nil = Ceons D

2 cons(s, nil )@(2)
Cil > == > Ceom)
(2)
Ce D it

Figure 7.19: Preserving a refinement translates the delta

PRESERVE is not limited to just tree transformations. In Figure 7.19, we
show an example of preserving a theory morphism. The delta is simply mapped from
the originating domain to the target domain. We remark that formally justifying
such a step requires a theory about rewriting rewrites themselves. Our definition of

PRESERVE sidesteps this requirement.

It may be very difficult to preserve the application of complex transforms such
as LR-parser generators in the face of deltas. In the case of a parser generator, it
is relatively easy to re-run, so it may actually be reasonable to simply give up and
BANISH such transformations. One can also consider handling commonly occurring
special cases (such as token renaming, addition of terminals to existing rules, etc.).
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7.4.2 Procedure for integrating Ay

We have seen a conceptual overview of Ay integration as ladder construction.
We have seen how to form ladder rungs by applying the PRESERVE operation. We
have hinted that BANISH can be used on transformations that cannot be preserved
in the face of a delta. Now it is time to assemble the pieces into a Ay integration

procedure: INTEGRATE; (Figure 7.20).

This procedure accepts the initial specification fg, a derivation history H lead-
ing to a current implementation and a maintenance delta 6; applied to fo; it pro-
duces H,eyised, the portion we could save, and an implementation of TI( H eyisea(fo))-
INTEGRATE operates recursively by PRESERVEing the first transformation in
the history and revising the rest of the history according to the resulting delta. If it
cannot preserve a transformation, then that transformation is banished, and it revises
the resulting history according to the current delta. The final history, H,.yi5eq 1s built
up from the bottom while unwinding the recursion. The ladder is never built as an
entity.

Using INTEGRATE , it is possible to insert a Ay in the middle of a derivation
history. This is accomplished by splitting the history at the point of insertion, revising
the suffix of the history according to the desired delta, and combining the unchanged
history prefix with the revised suffix. Given a functional specification f, with history
H, we can insert 6; between H[j — 1] and H[j] by computing:

(implemented, program, H.,.,) = INTEGRATE ;(TI(H[1..7 — 1])(fo, 6y, rest(H, j))

rest

and replacing the derivation history with H[l..; — 1] + é; + H..,;- We name this
process INTEGRATEMIDDLE to remind us that the revision takes place at some
named index point. We will find INTEGRATEMIDDLE  especially convenient when
attempting to repair a design history in Chapter 8 by inserting property-preserving

transforms.

7.4.3 Ay integration: An Example

In this section, we provide a concrete example (Figure 7.21) of reusing a deriva-
tion history by integrating a functional delta. This is one of the key examples in this
thesis. The example follows the conceptual ladder-construction process, rather than
the procedural implementation, but the effect is identical.

For the sake of an example, we have chosen a problem domain consisting of
stack-computations. An algebraic specification of the problem domain can be found
in Appendix C, but the key ideas are stacks-as-values, and operations that push and
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Function INTEGRATE(Program: CurProgram, Transformation: Delta,
DerivationHistory: History)
Returns (Boolean,Program,DerivationHistory)
% Constructs a new implementation and history for the
% program defined by ApplyTransformation(Delta,CurProgram) ...
% by revising the DerivationHistory of CurProgram to integrate Delta
Declare Program: Implementation, Partiallmplementation
Declare DerivationHistory: RevisedHistory, Boolean: SuccessFlag
Declare Transformation: Preserved Transformation, RevisedDelta
If length(History)>0
And Not ConventionalTransformationallmplementation
Then
% Try to Reuse history to derive new implementation
(SuccessFlag,Preserved Transformation,RevisedDelta):=
PreserveTransformation(CurProgram,History[1],Delta)
If SuccessFlag Then
% We were able to preserve the original transformation
(SuccessFlag,Implementation,RevisedHistory):=
INTEGRATE ;(ApplyTransformation(History[1],CurProgram),
RevisedDelta,rest(History,2)) % integrate the rest!
If SuccessFlag Then
% Success at revising history and obtaining an implementation
Return (True,Implementation,
Preserved Transformation+Revised History)
Else
% Not able to revise history and obtain an implementation.
% Perhaps we can get an implementation from CurProgram.
% Tf not, it is hopeless from here.
Return Implement(ApplyTransformation(Delta,CurProgram))
Fi
Else
% Can’t preserve History[1] because of some inability to resolve conflict...
% with the desired Delta so make History[1] stop bothering us.
(Partiallmplementation,Revised History):=
BANISH(CurProgram,History)
% ignore Partiallmplementation
Return INTEGRATE ;(CurProgram,RevisedHistory,Delta)
% Won’t loop: BANISH chops off offending transformation
Fi
Else
% No more revision possible, nothing left to revise.
Return Implement(ApplyTransformation(Delta,CurProgram))
Fi
End INTEGRATE;

Figure 7.20: Procedure to Integrate Ay into derivation history
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bo : empty =
push(s, empty)@(2,1,2)

cq = pop(push(?x,7z))
= 72Q(2)

61 empty =
push(s, empty )@ (2)
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empty — nil pop = cdr
Y
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Figure 7.21: Aj-integration (replay) using a derivation history
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pop scalars onto stacks, producing new stacks. The example is a little contrived in
order to make it both small enough to fit on one page as well as a little bit interesting.

A particular expression from the stack domain is provided as the base speci-
fication, shown in in tree form inside the box labeled fy in the figure. To keep the
example uncluttered, we leave the balance of the specification G, implicit, but we
assume it includes prunguage (f) = LISP and some unstated computational efficiency
goal.

The leftmost column of the diagram shows an implementation process. The
boxes labeled fy through f; down the left side are a series of design states traversed,
with f; being an implementation of fy. The arcs form a derivation history, of mixed
types of transformations. Transformations ¢y, ¢z and ¢4 are tree transformations with
path locaters; ¢y is a theory morphism (“refinement”) mapping stack expressions into
LISP. Both types of transformations are described as examples in Section 3.1.7.
Transform ¢; is a simplification in the stack domain. Transforms ¢z and ¢4 are sim-
plifications possible in the LISP domain; they are not possible in the stack domain.
These simplifying transforms are are obtained from the algebraic specification of the
domains. The implementation process follows that of the Draco system [Nei84a] in its
style of repeatedly performing optimize-within-domain then refine-to-new-domain.

The rightmost column is similarly an implementation process, starting with
a different specification fj, and carrying through various transformations and re-
finements. The horizontal dashed lines show how one derivation history maps into
another via application of the deltas. The reader may wish to compare this figure
with Figure 7.3; the only difference is that this figure is more detailed.

A problem to be solved by transformational maintenance is, given:

e fo
o the leftmost derivation history (which was presumably difficult for the transfor-
mation system to generate because of the control problem)

o the functional delta 69 = empty = push(s, empty)Q(2,1,2)

how can f} and the rightmost derivation history be generated, running as little of the
transformation system control process as possible? Intermediate states fi, fo, and
f3 are presumed unavailable because of the expected high cost of storing every state.
Since this is a maintenance situation, we can assume we also have the implemented
program fy, but it will turn out to be unnecessary; all we really need is the derivation
history. Note the contrast of this situation vis-a-vis conventional maintenance, where
all we have is f; and some knowledge that it is wrong!



7.4. INTEGRATION OF FUNCTIONAL DELTAS Ap 217

We start with state fo, with existing transformation ¢;@(2) and desired é6q =

10@Q(2,1,2), tg = empty = push(s, empty). Set the new derivation history to empty.
We compute f = do( fo), and save it.

Step 1.

Step 2.

Step 3.

Step 4.

Computing  PRESERVE(fo,c1@Q(2),60@(2,1,2))  produces  the  result
(true, c1@Q(2),1,@Q(2)), thereby producing the revised transformation ¢;@(2) to
append to the new derivation history. We have avoided invoking the transfor-
mation system. We compute f; = ¢;@Q(2)( fo).

Computing PRESERVE( f1,¢2,10@Q(2)) produces the result (true,cs,t;@(2))
with 1 = nil = cons(s, nil), essentially by applying the refinement to both
parts of 5. We have again avoided use of the transformation system. Append
2 to the new derivation history. We compute fy = ¢3(f1), and discard f;.

We attempt to compute PRESERVE( f,c3@Q(),1,@Q(2)), which fails (returns
false) because of the interaction between #; and ¢3 over the simultaneous re-
moval and required presence of nil, respectively. There is simply no way to pre-
serve transformation c3@(). We therefore BANISH ( f5,[c3Q(), c4@(1)]), which
produces the revised history [c4@(1)]. This effectively (BANISHO) demotes c3
below ¢4. This demotion is shown in the sub-derivation history which branches
from state f; and continues down the middle of the page. In practice, BANISH
also chops off the now-trailing transformation c¢3@() because it is already known
to interfere with the delta. We show the trailing ¢5 so that the reader can see
the equivalence of the derivation history pair determined by commuting trans-
formations it contains.

Having BANISHed C3, and promoted Cy, we  compute
PRESERVE( fz,c4@Q(1),1,@Q(2)), producing the result (true,c4@(1),t;@(2)),
again without resorting to use of the transformation system. Append #;@(2) to
the new derivation history. We compute f§ = c4@Q(1)(f3), and discard fs.

Either ¢;@Q() was truncated by BANISH, or we attempt to
PRESERVE( f3,¢3Q(),1,@(2)) which fails again. In either case, we find that
we can make no further progress towards an implementation using the old
derivation history information; we consequently throw away any remaining old
derivation history at this point. We compute f; = 85(f%), discard f, and then
give fi to the transformation system to complete the implementation. The
transformation system generates the new implementation f; by applying the
cons-nil simplification at an entirely new place; the additional transformation
is appended to the new derivation history to form the completed, new derivation
history.

The process terminates with the new implementation fj, the new derivation

history appropriate for f;, and a new starting point, the saved fj. We are immediately
ready to apply another functional maintenance delta.



218 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

The example demonstrates successful reuse of 3 of the 4 transformations
from the original derivation history. All the mechanisms, DEFFER, BANISH, and
PRESERVE are required to carry this out.

A prototype system that takes a derivation history and a functional delta, using
conditional tree transformations and theory morphisms, was constructed in Common
Lisp. The system closely matches the structure of the code in Appendix B. It
generated this example, as well as a number of similar examples, up to the point of
generating a new tail (stops at f3) for the revised derivation history. This particular
example takes 50 mS. of CPU for 3 retained transformations, or about 17 mS. each.
This is clearly a big win over 250 mS. average per generated transformation typical
for Draco. While we realize that the small scale of the example prevents any strong
conclusion from being drawn, it is nonetheless very encouraging. Larger examples
were not run because of the difficulty in obtaining a valid derivation history; no
transformation system available to us produces these in a usable form.

One gains a better appreciation of the utility of this process by comparing how
this same functional change would occur in a more conventional software engineering
environment. We assume the maintaining organization has the implementation, fy,
and an informal document fo approximating fo; the derivation history has, as usual,
been lost (assuming it ever existed in any form). The customer, who only understands
the abstract program fo, appears with an informal wish to change what the abstract
program does, i.e., an informal approximation 5o of 8. The maintainer’s job is to
produce f; from the source code, f4, given just the informal fo and informal 50,
with no derivation history. What is he to do? It is very difficult to see how to
do anything on a problem even as simple as this, and practical maintenance often
happens on specifications 10,000 times as big. It does not come as any great surprise
that maintenance in conventional software engineering environments is a hard task.

7.5 Intertwining of Implementation
with Specification

Our model of transformational maintenance suggests that the transformational
implementation process is run as an atomic transaction, and that maintenance deltas
are generated between such transactions. London [LF82] discovered situations in
which transformational implementation of a Gist specification unexpectedly required
change to the environmental portion of the specification; this corresponds to feedback
from a partial implementation to the specification while running the transformation
system. Swartout [Swa82] dismisses conversion of specifications to implementation
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Figure 7.22: Intertwining of Specification and Implementation

with no change of specification as unrealistic; they argue that the realities of imple-
mentation will force changes onto the specification.

Given this experience, in a practical Design Maintenance System, we expect that
maintenance deltas can arise during the transformational implementation process,
that we would like to apply to some state in the middle of the design space. This can
occur when, part way through an implementation, there is a need to achieve a slightly
different functional specification than originally intended, in order to accommodate
or take advantage of newly discovered aspects of the environment or implementation
technologies. In fact, one might produce a maintenance delta for any aspect of the
implementation for which it might appear convenient.
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One way in which such deltas might arise occurs when an extremely desirable ¢;
fails to apply at some step sg; the desirability of the ¢; will be due to some performance
goal which is difficult to satisfy. If a 6,,,0rtuniey can be found such that

deﬁned(ci(6oppom‘unity (Sk>>>

then applying that delta will achieve the desired effect. A common example of this
is the decision to implement some previously unrestricted-range integer value using a
fixed word size, in order to allow fixed-precision operators (such as machine instruc-
tions) to operate on that integer. This obviously changes the meaning of the original
program; it no longer operates on unbounded precision integers.

To integrate such a mid-development & ,pportunity (Figure 7.22) one must not only
propagate the change forward through the design history, but also backwards to the
original specification. This is necessary to allow the system analyst to determine,
using vocabulary he understands (by virtue of being able to specify with it), the con-
sequences of change, as well as ensuring the presence of an f] so that transformational
maintenance can be applied later.

Change to use a technology (Ay) requires the designer to note the potential
utility of a transformation ¢; in the library. The ability to inspect the s; for the
appropriate place in which to apply ¢; is also necessary; a tool to indicate in which
s;, and where ¢; almost matches would appear to be helpful. Having settled on a
particular s;, the same program editor outlined earlier, applied to s; instead of s,
would be used to capture the specific 6; necessary to apply ¢;.

The procedures we have outlined do forward integration of functionality deltas.
We have not explored mechanisms for accomplishing backward integration, but think
that most of the necessary ideas are present.

7.6 Evidence for Significant Commutativity
in the Design Space

If we hope to take advantage of commuting transformations in the design space,
we must be sure it is present often enough for this technique to be useful. Tt is
obviously present, as evidenced by our examples, and is noted by Steier [SA89] after
comparing several algorithm syntheses. If it does not occur often enough, the delta
integration procedures will still be correct, but so little of the derivation history will
be preserved (because BANISH chops transformations that fail to DEFER) that we

might be tempted to simply start fresh each time, contrary to our original purpose.®

5Tt may actually be the case that even saving just a few transformations can provide considerable
performance gains when re-implementing; [Kam89] shows that reusing even a small plan to solve
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We draw our hope for significant amounts of commutativity from three sources:

e Generic: success of conventional software maintenance
e Instance: Experience with transformational porting of software

e Empirical: Speedup measured by Lexical Search algorithm

7.6.1 Commutativity in conventional software construction

Our first indication is the success with maintenance changes are made to con-
ventional (non-transformationally generated) software systems. Virtually all such
maintenance leaves a significant portion of the original software unchanged. Our own
personal experience of 20 years of building operating systems also convinces us of the
stability of existing code. Linton [LQ89] instrumented MAKE and determined that
typically only 20% of a system is recompiled after it is changed. Some 6 out of 10
recompilations in a similar environment are caused by poor modularization caused
by overly-large source units that are widely visible according to [Bor89], suggesting
that only about 10% of a system must actually change. Even this estimate must be
too high, as it is measured in terms of compilations of modules, and not the contents
of modules, which we suspect stay largely unchanged.

The mostly-unchanged nature of the revised artifacts hints that the original
design decisions, however they were made, are preserved, even though we cannot see
them directly. Commutativity requires both preservation of the original operators,
and the ability to reorder them; preserved design decisions meet part of this condition.
The fact that the software looks nearly identical suggests that the order in which the
decision to install the delta, before or after the original product, isn’t very significant,
and lends credence to the idea that reordering should be frequently possible.

7.6.2 Commutativity in the Draco portage project

The initial motivator of the work discussed in this thesis was a project to semi-
automatically port the Draco tool [ABFP86] from one LISP dialect to another. The
porting process was accomplished by abstracting the source code idioms (used by
the Draco source code) in the source dialect, to domain abstractions, stated as func-
tional specification fragments, and then transformationally implementing the func-
tional specification formed by the configuration of domain abstractions that resulted.
As we had to manually define the abstractions and the implementations, we naturally

problems decreases problem solving time drastically, and that the savings grow as the problem size
grows!
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guessed them wrong a number of times, necessitating roughly 10 cycles of correct
(the abstractions and implementation transforms), abstract, implement, to obtain
a successful port. FEach cycle produced an implementation, and we observed that
large portions of the successive implementations were identical. The observation of
near-constancy of the bulk of the transformationally-implemented code in the face of
numerous changes in fact lead to this line of research. We note that the original spec-
ification was in fact held constant, but changing the idiom-to-abstraction maps has
the effect of functionality changes Ay, whereas changing the implementing transforms
produced technology changes Ac. Here we have evidence of the small-delta implies
small-implementation-change in the context of transformational implementation.

In the case of the Draco tool, in fact, all of the refinements from one domain
to the next provably commute because they are essentially context-free substitutions.
Every transform applied during the porting process were of the refinement type, so
in fact a great deal of commutativity in the design space was present.

7.6.3 Commutativity implied by
Speedup in Lexical Searching

Our strongest evidence is provided by the empirically determined performance of
an algorithm designed to take advantage of commutativity in a search space. Lexical
Searching [Bax88] is a problem-space search algorithm (see [Pea84] for a thorough
discussion of such algorithms). It requires that that all branches through the search
space be labeled with elements taken from an arbitrary partially ordered set; this
induces a label string for any path through the search space. When commutative
operations (note the distinction from operators, which is a special case) in the space
are found, Lexical Search explores only the path with the lexically smaller label string,
thus saving search energy. Lexical search skips only paths which a conventional search
would explore fruitlessly.

The laboratory rat for search algorithms is known as the N-puzzle problem:
an N x N grid of sequentially numbered, orthogonally sliding tiles, with a single
missing tile which provides space into which to slide another tile. The problem is to
find a sequence of tile slide movements that organizes the tiles so that the numbers
have a particular configuration; a typical requirement is that the numbers increase
sequentially from left to right, top to bottom for a solved puzzle, with the blank being
the lower rightmost corner. Starting states are scrambled configurations of tiles.

To model the problem space of transformational implementation, a variant of
the laboratory rat was bred: instead of a single missing tile, one can have two missing
tiles; a typical starting configuration is shown in Figure 7.23. The purpose of this
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Figure 7.23: 3x3, 2 blank N-puzzle problem

variant is to arrange for operations that sometimes interfere, and sometimes do not.
When the blank spaces are far apart, tile moves into one blank space can be performed
without regard to moves into the other (consider moves by tiles 1 and 5 in the goal
state as examples); such operations commute. Conversely, when the blanks are close
together, some moves into one blank disable/enable moves into the other (consider
the moves by tiles 5 and 2 in the start state); such operations do not commute. The
problem space for this puzzle thus has patches where operations commute (blanks
temporarily far apart) and where they do not (blanks come near one another). We
argue that this approximates the type of space for software implementation.

A graph of the ratio of effort by a conventional search to a lexical search, to find
solutions to some 350 random problems for 3x3 puzzles in this space, versus length
of solution®, is shown in Figure 7.24.

5The branching factor in this space is about 5, and solutions of length 22 are being generated by
exhaustive search; this would truly be an immense amount of computation if the search were not
augmented by a number of algorithmic shortcuts, such as IDA* [Kor85], elimination of inverses, etc.
which are inappropriate to discuss here. The fact that both searches produced the same solution
was verified in every instance.
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Figure 7.24: Speedup using Lexical Search in artificial design space
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The graph shows that lexical search saves a factor of 2 effort for solutions of
length 10, and a factor of 10 effort for solutions of length 22, with the savings grow-
ing more or less monotonically in between. The interpretation of the savings by
lexical search is that there are as many commutative paths in the search space as the
magnitude of the savings.

Collecting ratios for individual 3x3 problems averaged about 1 hour of CPU on
a 20Mhz Intel 386 under a compiled version of CommonLisp. Attempts to extrapolate
this data by scaling up to 4x4 problems were stymied by inordinate execution costs;
collecting this ratio for a single 4x4 problem cost 1 week of CPU, but showed a savings
of 100 times for a solution of length 27.

This evidence suggests that commutativity of paths in the space goes up mono-
tonically with solution length, and may in fact grow very quickly with the number of
steps. The analysis in [Bax88] suggests that the growth is exponential in the solution
length; this is not surprising when one considers that permutations are being elim-
inated, and the number of permutations of a string is n!, essentially an exponential
function. When we consider that a transformational implementation of a moderate
size specification has on order of 10* steps (Figure 3.8), the number of different paths
to the same point in the design space would appear to be truly immense. This give us
great hope that a derivation history can be rearranged for our convenience, leading to
the same solution point; this is why we believe the swap procedure in the functional
delta integration process is likely to be effective.

Our purpose in defining Lexical Searching was twofold: first, to explore the
amount of commutativity in the design space, and secondly, as an enhanced mecha-
nism usable by a transformation system. We have yet to use Lexical Search in the
second application.
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7.7 Summary

Our purpose was to define and provide procedures for transformational mainte-
nance given just a derivation history.

In this chapter, we have:

e Shown the utility of “commuting” transformations in the design space for man-
aging integration of maintenance deltas into a derivation history

e Provided a theory behind the notion of “commute”: DELAY

o Identified frequently-occurring special cases and outlined procedures for imple-
menting those cases for tree transformations: SWAP and DEFER

e Defined procedures for removing unwanted transformations and their depen-

dents from an existing derivation history: BANISH, BANISHBATCH

e Noted the utility of BANISH as a mechanism for use in dependency-directed
backtracking

e Provided procedures for revising a derivation history and implementation given
technology A¢ and/or functional deltas Ay

e Shown different classes of evidence for the presence of significant commutativity
in the design space, justifying the use of mechanisms such as DEFER

e Given an empirical demonstration of commutativity in certain spaces with prop-
erties similar to those of transformation systems.

These ideas have been tested by a proof-of-concept implementation of the Ay inte-
gration procedures.

We have demonstrated the theory and practicality of reuse of derivation history
for certain types of deltas. Additional information, contained in the design history, is
both needed and needs revision in order to handle other types of maintenance deltas.
We will consider these in the next chapter.



Chapter 8
Integrating Maintenance Deltas
into Design Histories

Chapter summary. Most maintenance deltas affect the design justification.
This chapter describes procedures for integrating those maintenance deltas into
a design history. Such procedures typically mark places in the design history
that are inconsistent with the delta, eventually prune away their dependents,
and then repair the remaining history by an agenda-oriented TCL execution
scheme. Central to execution is insertion of a transformation into a derivation
history, and how the resulting complications in updating the design history are
handled. Procedures for each of the various deltas are described.

We have seen how, in Chapter 7, to integrate certain kinds of maintenance deltas
(Ac, Ay) into that portion of a design history called the derivation history. Changes
to the derivation history indirectly affect the design justification, and so we also need
procedures to adjust the design history when changes are made to the derivation
history.

Other maintenance deltas change the means by which the performance speci-
fication is achieved (Ays), change the specification (Ag, A, ), or the meaning of the
specification (Ag, Ap, Ay, Ay). Such maintenance deltas also require revisions be
made to the design history, as well as inducing changes on the derivation history.

In this chapter, we consider procedures for revising a design history to be con-
sistent with each type of maintenance delta. We will find the procedures defined
for revising a derivation history useful. The design history procedures are currently
less developed than those for derivation history management, so we only sketch the
mechanisms.

227
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8.1 Integration =
Revise, Mark, Prune, and Repair

It might be possible to construct specialized design history integration methods
for individual delta types that could directly modify the design history. We have
chosen a more conservative approach, in which all the design history delta integration
methods follow the same general sequence:

1. Revise: adjust structures in delta-specific fashion;
2. Mark: identify agenda items in the design history inconsistent with the delta;

3. Prune: prune away inconsistent agenda items, and all the forced choices de-
pendent on those already pruned; and

4. Repair: complete the pruned design history, perhaps by using new information
supplied by a delta.

As with modifying a derivation history, these steps are interleaved in practice, for
both individual deltas, and for the multiple deltas that make up a composite delta.

A delta may require direct revision of the design history or the support libraries.
Revisions to support libraries have been defined in Chapter 6. In particular, a delta
may augment the available support technology, allowing the repair process to take
advantage of new opportunities. Such revisions must take place before the repair
process is started.

The revision process usually inspects the design history relative to a particular
delta, and, while revising it, marks those parts (agenda items) which conflict with the
delta as undesirable. How the conflicts are detected depends on the type of the delta.
For many deltas, the design history revision process is limited to simply marking.
Direct revision of the design history takes place when handling performance changes,

Ag.

Undesirable agenda items are then pruned away, leaving an incomplete design
history (see Section 5.3.1)'. If the pruned agenda item is a forced (i.e., only) choice
on which some other agenda item is dependent, then it is only sensible that the
depending agenda item must also be pruned. Pruning an agenda item leaves its
parent incomplete. This part of the integration process is independent of the type of
delta.

!Nothing about our approach prevents us from applying a delta in the presence of an already
incomplete design history.
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Having finished the pruning process, the incomplete design history must be
repaired by processing incomplete agenda items. By designing TCL around a plan-
ning approach that uses agenda items, rather than a procedural metaprogramming
approach (like that of PADDLE [Wil83] or Goldberg’s system [Gol89]), we can ac-
complish this by simply passing the incomplete design history to the TCL execution
engine. We must of course ensure that pruning a design history always leaves it in
a “legal” state as far as the TCL execution engine is concerned. In this fashion we
avoid the need for a special “replay” mechanism; completion for delta integration and
completion for initial implementation are identical.

We consider these activities in the order Prune, Repair, and Mark, because of
the commonality of the Prune and Repair processes over all the delta integration
procedures, and the diversity of the Mark processes. We will not discuss revision
procedures for support technologies. Any other revision procedures will be discussed
with the corresponding Mark procedures.

8.2 Pruning the Design History

The purpose of pruning a design history is to remove those parts which are
either simply invalid or no longer serve any purpose relevant to the final performance
specification.

We assume that we have a design history in which some agenda items have been
marked undesirable. We must prune away:

e all portions of the design history which are directly marked
e every agenda item that depends uniquely on some pruned agenda item
e agenda items generated as descendents of those marked

e agenda items which are indirectly dependent on pruned agenda items

Leaf agenda items are transformations, and pruning them requires that we eventually
revise the derivation history portion of the design history.

Our approach is to remove agenda items from the design history known to be
bad, or known to depend on some agenda item which will be pruned for which there
is no alternative. Those agenda items which are indirectly dependent may not be
discovered immediately; we mark the design history in such a way that they will
eventually be discovered and pruned. What remains after pruning is a design history
containing incomplete agenda items having alternative completions.
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To prune an undesirable agenda item, the design history is traversed from that
item upwards until some parent agenda item that provides an alternative is found,
then that item is marked as incomplete, and all agenda items below that point are
removed from the design history. Agenda items which provide alternatives are OR,
FLSE, and ACHIEVE? (APPLY allows alternatives, but cannot be a parent). The
intervening agenda items by definition provide no alternatives, and will have to be
removed. A clever pruning process would leave a to-be pruned agenda item directly
under a not-to-be pruned parent, annotated as “don’t try this particular alternative
again.” The removal is easily accomplished with a recursive procedure that removes
all the descendents of a son, and then deletes the son from the design history. Because
the root of every design history is an ACHIEVFE node, this traversal process can not
climb past the root of the entire design history. When pruning a leaf agenda item
that APPLYs a transformation H[j], we additionally mark H[j] in the derivation
history as undesirable; during the plan repair process, an eventual banish will remove
the marked transformation. Revision of the derivation history by banishment can
invalidate downstream transformations; the agenda items which produced such invalid
downstream transformations are indirect dependents and must also be pruned as
encountered. Notice that we eagerly prune obviously invalid agenda items, but only
lazily mark transformations in the derivation history. Each agenda item marked as
undesireable must be pruned in this fashion before any attempt to repair the design
history is made.

In Figure 8.1, we show the pruning process. A sequence of activities is numbered:

1. mark agenda item undesirable

2. prune the undesirable agenda item and its dependents
3. mark dependent transformations as undesirable

4. BANISH an indirectly dependent transformation

5. mark, as undesirable, the agenda item generating the transformation

Some delta-specific marking process first marks (G; as undesirable. At the pruning
step, traversal moves up the design history from undesirable G; to the first parent
having an alternative, GGg. That item is marked as incomplete, and all of its de-
scendents (the outlined region containing Gyg, Gz, G7, and the unshown nodes that
APPLY transformations ¢%, ¢ and cﬁf) are removed from the design history. All the
transformations under the pruned region are also marked as undesirable. Eventually,
but not as part of the pruning process for G, some derivation history banishing
activity triggered by the need to remove ¢, ¢, ¢, will encounter ¢'; should this
transformation itself also need banishing, then its immediate parent (APPLY under
(ig) will be marked undesirable and the pruning process repeated. We will see how

this takes place in Section 8.3.3.

2The variant ACHIEVEBY is treated in the obvious way, nearly identically to ACHIEVE so we
do not discuss it further.
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Figure 8.1: Pruning a Design History back to an alternative
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Pruning the “subtree” below an agenda item a,, in a design history is slightly
complicated by the possibility that a descendent agenda item is actually shared by
another. In such a case, the shared agenda item a; may actually need to be removed,
or be simply disconnected from this subtree. We must remove a, (shown as Gy in
Figure 8.2) if it only serves a,, (Gg); we can retain a5 (Gg in Figure 8.3) if it serves
some other relative of a,, (G3).

Certain agenda items (APPLY, LOCALE, ACHIEVE, etc.) may use locale
values (variables) generated by other agenda items. Should a locale-value generating
agenda item be pruned, all of its locale-value using dependents must be adjusted. We
mark each locale-using dependent as incomplete, and its sons must be removed; this
ensures that the plan repair process will later re-execute the locale-using dependents.
Since all agenda items in the subtree below the alternative are removed by the pruning
process anyway, we need only process locale-using dependents of the alternative’s
immediate sons in this fashion. Finding the set of locale-using dependents is easily
accomplished by taking the transitive closure of the dependency slots stored in the
symboltable of the pruned agenda item.

8.3 Repairing the Design History

Repairing the pruned plan consists of executing incomplete agenda items ac-
cording to their actions, perhaps generating additional agenda items in the process.
Since each agenda item represents the execution of a TCL program fragment, and
such incomplete items can be produced by the pruning process in the middle (accord-
ing to the sequencing constraints in the design history) of the logical transformational
implementation process, to repair a design history we must have:

e Out-of-order execution of TCL methods and fragments

e The ability to insert transformations in the middle of the derivation history

We purposely glossed over the details of TCL execution in Chapter 4 to avoid
any preconceptions about order of execution. The execution order for a metapro-
gramming language like PADDLE [Wil83] or the tactics language of Goldberg is
totally determined, and very difficult to restart at arbitrary points, which is why
such metaprograms are replayed in their entirety from the beginning. Rather than
be saddled with a purely linear execution model for the metaprogram, we designed
TCL execution in such a way that an agenda-oriented execution process is possible.
Agenda items are produced by TCL language constructs when encountered, and pro-
cessed in the order determined only by the sequencing constraints defined by PLAN's.
Since some agenda items invoke methods or PLANSs, processing them produces sub-
agendas. The design history is a static snapshot of the processed agenda nodes and
the sequencing constraints.
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8.3.1 Agenda-oriented execution process

Given an incomplete design history, there may be a number of agenda items
which are individually incomplete. An agenda-oriented execution method chooses
any one of them and executes it, marking that agenda item complete, and possibly
adding more agenda items.

Agenda items must be processed in some order. We choose to process the
earliest incomplete agenda item, as determined by the ordering constraints in the
design history. This performs those actions with the most potential “ripple” effect
on the remainder of the design history (those agenda items and states which must
follow the selected agenda item in the design history) as early as possible. Such ripple
affects will cause later parts of the design history to be pruned and/or revised. While
we cannot in general avoid handling such ripple, our heuristic minimizes the amount of
revision required by doing early actions while the design history is as small as possible.
We will see later, when we discuss execution of APPLY actions, how an agenda item
can affect following design states. Processing the earliest incomplete agenda item first
also conveniently honors sequencing dependencies required by locale-use.

Each agenda item specifies a TCIL action taken from some TCL method
(Section 5.3.2) which determines what occurs when the agenda item is executed.
Most typical is the execution of a PLAN action, and the most potentially compli-
cated is the execution of an APPLY action; we will discuss these shortly. Alternative
generators interact with the pruning process as discussed below. Since other actions
are executed in similar ways we will not discuss them.

Agenda items with alternative completions

An incomplete agenda item must be executed according to its action and pro-
duce a satisfactory subagenda. Some of the agenda item types allow only a single
way to obtain satisfactory completion (PLAN, CALL, REQUIRE), and some allow
many alternatives (ACHIEVE, APPLY [via multiple possible locaters in a locale],
OR).

Agenda items which allow alternative completions contain an alternative gener-
ator as internal state. Creation of the agenda item initializes the generator. Execution
of the agenda item causes the next alternative to be produced, unless there are no
more, in which case this agenda item is unsatisfiable. Pruning the design history back
to an agenda item advances its alternative generator. An obvious pruning optimiza-
tion is to continue pruning upwards if advancing an alternative generator exhausts
it.
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Unsatisfiable agenda items are simply pruned (Section 8.2), exposing an even
higher level agenda item that provides an alternative. The remaining design history
is then passed back to the repair process (Section 8.3). Should the unsatisfiable
agenda item be the root of the design history, then the program specification is
unimplementable by the transformation system given the current support technology.

8.3.2 [Execution of PLAN agenda items

Execution of an agenda item a, containing a PLAN action happens in a way
similar to expanding a node in a hierarchical nonlinear planning process [CM85,
Kam89]. The design history is augmented by creating new, incomplete agenda items
a; for each element of the PLAN, and an ordering relation is placed on these newly
created agenda items according to the ordering > given by the PLAN action. Each
agenda item a; is annotated with its parent a,, and the parent is annotated with its
list of sons a; to allow later bidirectional traversal of the design history.

When a new agenda item is proposed for addition at a point in the design
history, the TCL execution engine searches the design history to see if there is an
existing agenda item which is equivalent in terms of execution order, and has an
identical action. Should such an agenda item exist, it is returned instead of creating
a new agenda item. This is the mechanism that produces shared agenda items in the
design history.

8.3.3 Execution of APPLY agenda items

An agenda item containing an APPLY action requires the application of a
transformation to a state. If we had a simple linear execution model, we could simply
apply the transformation to the last state (ITH)(fo) of the derivation history, but
with plan repair we can have out of order execution; the transformation might apply
to any state in the derivation history.

In the case of choosing agenda items to execute, we want to choose the earliest
to maximize the appearance of any possible downstream effects. When applying a
transformation, we want to apply it to the latest (largest index 7) state (ITH[1..7])( fo)
to which it can legitimately apply, because we will have to revise the derivation his-
tory from that point on, and we wish to minimize the effort to do so. The information
necessary to determine this is present in the ordering information in the design his-
tory. The appropriate derivation history index is the one preceding that used by the
earliest, already-complete A PPLY agenda item which must necessarily follow the new
transformation. When incomplete APPLY agenda items occur late enough according
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to the ordering information in the design history, the point of application turns out
to be the end of the derivation history, and so this scheme conveniently subsumes
the simple linear execution model (see Figure 8.4, in which we are applying a trans-
formation under G5, and note the absence of ordering under the root). To be able
to apply a transformation at any point along a derivation history, we must have the
entire state available to us at every point. This can be accomplished accomplished
by computing (ITH[1..7])(fo) where 7 is the insertion point; one can cache every nth
state to minimize this computation. We eventually hope to be able to use partial
states in a fashion similar to the way they are handled in nonlinear planners to avoid
this cost.

A more interesting case is shown in Figure 8.5, in which ¢§ has been marked
as undesirable, and the design history has then been pruned back to G5, which offers
the alternative ¢, shown by the dashed arrow. This alternative transformation must
be applied just prior to the earliest son of G7, i.e., it should replace H[3], and should
therefore be applied to fo = (ITH[1..2])(fo). This is accomplished by treating the new
transformation to be applied as a functional delta 6y and using an extension of the
INTEGRATEMIDDLE procedure (see Section 7.4.2) to construct a new derivation
history, shown in dotted outlines, growing horizontally in the figure, with the new
transformation inserted in the middle.

Inserting a Transformation in a Design History

Inserting a transformation into the derivation history fundamentally requires
us to build a new ladder (Section 7.4) to obtain the revised derivation history. The
ladder construction process repeatedly attempts to PRESERVE a transformation in
the face of the delta, or failing to preserve it, BANISHes the offending transformation.
Doing this in the context of a design history requires that we extend the procedure
INTEGRATEMIDDLE  to respect constraints from, and adjust the design history

in parallel with ladder construction:

o for determination of revised locaters for PRESERVE
e to re-validate proposed replacements for preservable transformations
o to adjust the design history to record the replacement

e to handle unpreservable transformations

We will discuss these topics in the following sections.

Using Locale information to Compute Revised Locators: In attempting to
PRESERVE a transformation, what guidance do we have for choosing a locater?
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Our theory from Sections 7.2.2 and 7.4.1 says that any locater that satisfies the
commutative square will do; but there may be more than one. The locale constraint
from the APPLY agenda item in the design history provides an additional constraint.
Even this may not be enough to uniquely determine a choice. Our current solution
is to take the first locater satisfying both the commutative square requirements and
the locale requirements. Should this turn out to be wrong, eventually some method
postcondition will fail during re-validation (see below) and backtracking will occur. In
general, it is not possible to prevent this from happening, so we do not feel justified
in investing a great deal more energy in improving this solution. What might be
helpful would be mechanisms for allowing tighter control of locale constraints, in an
attempt to eliminate as many false locaters as possible. Should there be no solution
satisfying the commutative square and the locale constraint, then the transformation
is unpreservable and is marked undesirable.

Re-validating Replacement Transformations: The proposed replacement must
be checked to ensure it still satisfies its purpose in the plan which generated it.
This can be accomplished by walking up the design history via parent links, and re-
executing any dynamic postcondition agenda items (necessarily last sons of a PLAN
whose action is REQUIRFE) until a parent is found with other sons that necessarily fol-
low the APPLY agenda node or a parent is found with some incomplete descendents.

In Flgure 8. 6 we see that c3 has been partially banished in the original history, and
that c4 and c5 have been preserved, and the ladder constructing process is attempting

to preserve cif. The preserved transformation cg requires checking the postconditions
of GG7; we need not check the postcondition of (Gg because it has an incomplete son
(G19. Should any postcondition check fail, the purportedly PRESERVFed transforma-
tion is not achieving its purpose, the replacee is marked undesirable in the derivation
history, and typically BANISHed immediately. Validation of a transformation via a
path containing a shared agenda item requires that the validation process be carried
through to all the parents; failure to validate along one path requires that the shared
agenda item cease being shared along that path.

Our approach to preservation of transformations ensures that any transforma-
tion (both the transform and the locater) interactively chosen by the software engineer
(Section 4.2.3) to satisfy a particular goal is retained by the repair process if it is still
valid. In the complete replay of purely generative design information, such applica-
tions are lost.

Adjusting the design history for the replacement: A re-validated replacement
transformation must replace its source in the originating APPLY agenda item. In
addition, the revised locater must be propagated to locale-value dependents found
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by following the dependency links in the symboltable and recomputing the locale ex-
pressions found. The propagation can stop when a recomputed locale value matches
the original value. The common case is when the locater does not change; no prop-
agation is needed. Locale-dependent APPLY's for which the locater changes must
be marked as incomplete to force re-application. Since locale-value dependents must
necessarily follow the replacement transformations, A PPLY's that must be marked in
this manner are later in the derivation history.

Handling Unpreservable Transformations: When a transformation  is
BANISH ed or marked as undesirable, the agenda item that generated it is marked as
undesirable. 1t is sensible to prune the undesirable agenda item immediately, to ensure
that dependent transformations in the derivation history are also marked undesirable.
Use of BANISHLAZY delays rearranging the tail of the derivation history as long
as possible in an effort amortize the cost of banishing over the largest number of
undesirable transformations.

A difficulty one can have when marking a transformation as undesirable is that
it may serve as part of a larger plan; this is why the pruning process climbs the de-
sign history until an agenda item providing an alternative is found, and then removes
everything down to the leaves of the subplan under the alternative. This ensures that
related transforms involved in the plan are also eventually removed. Related steps
can be arbitrarily far apart in the design history. In particular, an undesirable trans-
formation late in a derivation history may be supported by another transformation
arbitrarily early in the derivation history.

Now consider Figure 8.7. A problem can occur while building the ladder. The

delta may propagate past a particular transformation cimewed,
{2

preserved +
is ¢g, and our current delta is d5). While ci’iesewed_l_k may be banished, if some plan

and then conflict with

some ¢ i further down the history (in the diagram, ¢preserved 15 €4 and Cpreserved+k

(Gis) in the design history insists that cﬁmemed together with cﬁiesewed_l_k work together
atomically, then ¢,.csemeq must also be removed from the derivation history. This
invalidates the part of the ladder built by preserving ¢, cservea (cig,cﬁg,&l, d5).

It is easy to remove ¢ppeserea from the original derivation history; we simply
banish it. The problem is that our delta is already beyond ¢,,cs.req; What s the effect
on the propagated delta?

We know of no general way to decide that ¢,cs.e4 must be banished because of
an eventual conflict with a supporting transformation ¢, cserped+r, without pushing the
delta through the intermediate transformations, because the nature of delta is (pos-
sibly) changed by the intermediate transformations. There seems to no alternative to
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backing up, marking ¢,,esemed as undesirable, and restarting the ladder constructing
process from the point where ¢,c50.4 Was applied.

This suggests that, when used in conjunction with a design history, the ladder
constructing process must actually construct and retain the entire ladder, including
the deltas forming the rungs, because arbitrary backup may be required to handle an
unpreservable transformation. This raises the space requirements a factor of three. A
more difficult problem is need to retain all the presumed-large states (this was handled
incrementally by the derivation history version of INTEGRATE ); this is already a
requirement in order to be able to insert transformations at arbitrary points in the
design history (Section 8.3.3) and the same solutions apply.

Having discussed design history pruning and repair, we now consider how to
mark and adjust the design history according to various types of deltas.

8.4 Integration of Functional Deltas Ay

Integration of functionality deltas into a design history is easy because plan
repair already does most of the work. There is no need to mark any part of the
design history at all. It is only necessary to APPLY the functional delta 65 to fo.
The ladder-revising mechanism described in Section 8.3.3 will propagate the changes
into the design history appropriately. The extended design history must be adjusted
as shown in Figure 8.8; the new functionality delta is added underneath G, ,4ri0n¢ to
record its purpose.

8.5 Integration of Technology Deltas A,

Integrating technology deltas (Ac¢) requires removal of newly-illegitimate trans-
forms from the design history, and possible use of newly-added transforms. Removal
of newly-illegitimate transformations requires marking:

o those illegitimate transformations in the derivation history

o the APPLY agenda items which generated them

Pruning and repair can follow immediately. The use of truly new transforms from
0c.Ag is left to the repair process where they will be discovered indirectly via invo-
cation of modified methods APPLYing the new transforms.
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The transformations H[7] in the derivation history for which H7 [i] are members
of the set(s) of deleted transforms é..Ag are marked as undesirable, exactly as out-
lined in Section 7.3. This will force eventual removal of these unwanted transforma-
tions when some later derivation history scanning process (transformation insertion

or BATCHBANISH) encounters the marked transformations.

The agenda items which APPLY’d the now-illegal transformations could be
marked as undesirable. Instead, we simply mark them as incomplete. The reason for
this is the consistency requirements on deltas. No transform can be applied unless
explicitly mentioned by an APPLY action in some TCL method. If a transform
¢ in 6..Ag is being permanently deleted from the transform library Ciispery, then all
methods referencing that transform must be deleted or modified to no longer reference
the transform; if the transform is simply being replaced (due to an error in domain
engineering), then the applying methods will be untouched. If the applying method
remains untouched, we merely desire that the replacing transform be applied instead
of the replacement; our policy of marking the agenda item as incomplete will ensure
that the replacing transform is eventually installed. In the case of a deleted transform,
there will be a corresponding )y in the composite delta, that when processed, will
prune the offending APPLY agenda item (see Section 8.8). The fact that pruning
occurs before repair ensures that for any updated transform, the old version is removed
before the new version is applied.

8.6 Integration of Performance Deltas Ay

Performance deltas Ag change the specification of the desired artifact. We have
seen that typical specifications are often given as mixed specifications (fo, Gest).
Performance deltas are can then limited to changes of G,.;. We have seen that
changing G5 requires that a different path through the design space be chosen to an
alternative implementation in Figure 7.1. The choice of path through the design space
is controlled by decomposition of the performance goals allowed by TCL methods in
Miiyrary- The decomposition of the performance goal for the current artifact is stored
in the structure of the design history. Integration of Ag requires that we revise this
decomposition.

Our approach is to revise the design history by propagating the specific é4
in a top-down fashion, paralleling the design history construction method by goal
decomposition.
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Given é¢ = (G, Gg):

Gg = O(n?) A sloc < 10
Gg = O(nlogn) A sloc < 8

METHOD my, = (i, Gy, az,)

CALI(i,0)

ag

ACHIEVE(G, ¢)

Gr=OT2) N LISP
o= = n?

o' =7r = nlogn

\

ACHIEVE(G, €;)

G = O(n?) A sloc < 10 A LISP

G' = O(nlogn) A sloc < 8 N LISP

Gro,Go F G

ACHIEVE(Gy, ¢)

G, = sloc < 10

G' = sloc < 8
o7, = (sloc < 10, sloc < 8)

G]‘ = 0(71‘)
§; ={0(n?),O(nlogn))

Figure 8.9: Propagating 6 from root to leaves of design history
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As we walk down the design history, at each ACHIEVE(G, e) agenda item (see
Figure 8.9), we must do the following:

1. Revise the ACHIEVE(G, €) agenda item to be ACHIEVE (6c(G),e)

2. Decide if CALLing method 7 is still useful as a means of decomposing the revised
goal

3. If not, prune the nonprocedurally generated subplan
4. Tf still useful, determine the changes induced by 65 and propagate those into

both subplans. Propagation should be into earlier subplans first to minimize
propagation into subplans that become useless.

Determination of the continued utility of the method my = (i, ar, Gi) re-
quires that we re-validate the goal decomposition process. If we cannot re-
validate the goal decomposition, then the nonprocedurally generated plan to im-
plement ACHIEVE(G,e) is not valid for the new ACHIEVE(6¢(G),e). We force
the eventual pruning of the generated plan by marking both the CALL and the
ACHIEVE(Gy,€') nodes as undesirable, and terminate the propagation of ég into
this subagenda. An eventual pruning process will prune the plan back up to the
revised ACHIEVE(6¢(G), €) node, and the repair process will attempt to find a new
replacement.

A successful re-validation of the decomposition requires verification that
do', G Gro', G F 6c(G).  Given such a re-validation, we:

o revise CALL(i,0) to CALL(i,0")
e propagate ¢’ into the subagenda aj under the CALL.

o recursively propagate a new ¢, : G, = ! into the subagenda
ACHIEVE(G,, €'), using this same procedure

Propagation of & can stop if 67, can be determined to be an identity. Propagation
of ¢/ can terminate when ¢’ = 0.

Propagating o’ into the subagenda aj, requires

e propagating o’ into subagendas for all actions a; such that a; € a5 and
action(a;) = ACHIEVE(Gj, €;):
1. computing a new performance delta ¢; : G0’ = §,;(G,0)

2. recursively propagating ¢; into the design history at «a;

e adjusting other agenda items derived from a;, that are affected by o’, such as
REQUIRFE(G,, e;), etc. This may require re-validating performance predicates.

Such agenda items are easily found because the structure of the design history is a
direct reflection of the structure of method body ay.
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In general, verifying the existence of a new o', G, and derivative o, and various
¢'s is very hard; it depends on the semantic relations between the various types
of performance goals. We would need a description of this semantic relation and
a theorem prover to do this computation. However, our assumption that G, is
conjunctive in nature, and a further assumption that the performance predicates are
totally unrelated means that much of this can be treated as a problem in manipulating
sets of independent predicates. Much of the computation then consists of shunting
subsets of the components G, Gy of the performance delta 6 = (G, Gg) to the
right place. Figure 8.9 shows how this occurs for a specific case.

8.7 Integration of Performance Bound Deltas A,

Performance bound deltas ¢, are simply a special case of Ag, and so essentially
the same integration procedures can be used. When revalidating performance goals,
additional information about the relation () of the old and new performance bounds
can make this process easier, by taking advantage of:

v =02 D (p(f) = or B p(f) = va)

Tighter performance bounds make it less likely that a performance goal will
continue to be successful, while looser bounds tend leave its success unchanged.

In Figure 8.9, if Gg was O(nlogn) A sloc < 12, then we can use the fact that
105100 > s10e 12410 to determine that the original (&, is satisfactory even for the changed
performance specification, and so we need not propagate any d;, into the subagenda

under G,.

8.8 Integration of Method Deltas A

Integrating a method delta 65( requires handling each of its aspects
(Section 6.4.4):

o Apie: removal of agenda items produced directly or indirectly by deleted
methods

e Mg revising the method library to make new methods available to the repair
process

® A tpostcondition: checking that invoked method postconditions are still valid

® A pfaction: revising bodies of invoked methods
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Handling Ao: We mark as undesirable all invocations in the design history
of the deleted methods; these are agenda items whose action field says CALL(i,0)
for all 2 € Aps. An eventual pruning process will remove the CALL, all the agenda
items introduced by such called methods, and will also prune upwards until some
alternative is found to the invoking plan.

Handling Aptucti0n: For each method 7 with an action revision & ({z,6;) €
A Maction ), We do the following:

e immediately prune the sons of agenda nodes whose action is CALL(7,0). If we
were to simply mark the sons undesirable, a later pruning process would prune
away too much: the CALL nodes that invoked the body.

o mark such CALL nodes as incomplete (safe and appropriate because its sons
have been removed)

e revise the method library element for 2

This ensures that the old plan for method 7 is removed from the design history; the
plan repair process will install the revised method body when it eventually repairs
the incomplete C'ALL nodes.

An idea we have not pursued is the possibility of using the transformation
component of Aqaeiion that revises the method body to guide the direct revision of
the design history at every point where the method was invoked. The similarity of
the structure of method bodies in terms of actions, and the corresponding structure
of agenda items which act as instances of the method execution are what gives this
idea promise; the payoff would occur in the avoidance of re-doing work generated by
agenda items representing the leaves of the method.
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Figure 8.10: Nonprocedural invocation in design history
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Handling Aatpostcondition: For each method ¢ with a postcondition change 6
({7, 6c:) € Apmposteondition ), We check that nonprocedurally invoked instances of method
(1,ar, G) are still valid and adjust the subagenda according to changes induced by
d¢; those which are no longer valid have the corresponding CALL(7,0) agenda item
marked as undesirable. In particular, the design history is searched for agenda item
complexes of the form shown in Figure 8.10. For each such complex, the goal decom-
position process used by ACHIEVE(G, e) is retried to verify that the revised method
postcondition 6¢(Gy) is still effective. If Jo/, G, : 6¢(Gr)o’, G F G can be satisfied,
then a revised & : G, = 6(G,) can be propagated into the ACHIEVE(G,, e) sub-
agenda, and o’ can be propagated into the CALL(7, o) subagenda using the procedures
outlined for propagation of és into subagendas in Section 8.6. Failing to find a de-
composition for the revised postcondition 6¢(Gy) tells us that the method is no longer
applicable; we simply mark as undesirable the CALL(i,0) and the ACHIEVE(G., ¢')
nodes. An eventual pruning process will prune back to the parent ACHIEVE, and
plan repair will find a new replacement.

To minimize wasted effort caused by propagating performance specifica-
tion changes into changed method bodies, Axfueii0n should be processed before

AM postcondition -

8.9 Integration of Library Deltas A; and Ap

The support deltas:

e Ap: Change of performance measurement functions

o Ag: Change of performance predicate library

change definitional aspects of the performance predicates usable in performance
goals.

Changes which delete performance measurement functions or performance pred-
icates will affect the design history indirectly, through the consistency requirements
on composite deltas. If a performance predicate is no longer available, then the consis-
tency requirements demand that methods which reference that predicate be modified
or deleted; the design history will be purged of references to that predicate by some
A that modifies or deletes methods that referenced the deleted predicate. Similarly,
added performance measurement functions or performance predicates can only affect
the design history via method deltas.

Changes which replace performance measurement functions or performance
predicates necessitate the re-validation of dynamic postcondition checks that use
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the replaced functions/predicates. Such re-validation occurs automatically when a
functional delta is applied, or a dummy BATCHBANISH is applied in place of a
functional delta, so no additional action is needed to handle such a delta.

8.10 Integration of Range Deltas Ay
and Order Deltas A

The support deltas:

e Ay: Change of range of performance values

o A;: Change of orderings =;

change only the outcome of evaluations of performance goals. Re-validation of dy-
namic postconditions is sufficient to handle these. As with Ag and Ap, such re-
validation occurs automatically.

8.11 Processing order of Deltas

A composite delta given to a Design Maintenance System consists of a set of at
most one delta of each type, as described in Chapter 6. The individual deltas that
make up a composite delta should be processed according to the following partial
order to ensure that consistent changes are made:

Ay > Ap  Change range before measures

Ay > Ay,  Change range before ordering

Ap> Ag  Change measures before goals

Ag > Anm  Change goals before methods

Ac > Ay Change transforms before methods
Arp> Ag  Change methods before performance
Ap> A,  Change methods before performance
Ap> Ay Change methods before functionality

The general rule is, if concept a is used as a building block for concept b, then
changes to @ must be processed before changes to b: A, > A;. A topological sort of
this ordering, usable as an order to process the deltas, is:

Ay >Ap>Ar >Ag>Ac>Au>Ac>A, > Ay
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Since the delta integration procedures consist generally of Mark, Prune, Revise
and Repair, we can generally perform just the Mark and Revision portions for each
delta according to this ordering. Pruning and Repair are common to all the deltas,
and can be generally delayed until Pruning and Revision for all delta types has been
completed. This observation motivates the sequence of the design repair process

shown in Figure 1.13. The final BATCHBANISH is not required if a 0 is integrated.

8.12 Summary

This chapter has outlined procedures for integrating various types of main-
tenance deltas into a design history. Such integration procedures typically mark
portions of the design history that are inconsistent with the delta, prune away the
inconsistent parts and their dependents, and then repair the remainder of the de-
sign history by executing incomplete agenda items. Completing agenda items often
requires inserting new transformations into the derivation history and further adjust-
ment to the design history. We outlined delta integration procedures for every type
of delta defined in Chapter 6, both for changes to the specification, and changes to
the support technology used to implement the specification.

The existence of such procedures to revise the design history depends on the
presence of an explicit maintenance delta. The maintenance delta guides the pro-
cess of revising the design history, providing us with a considerable portion of the
mechanisms necessary for a Design Maintenance System. Since the procedures are in-
sensitive to whether the design history is complete or not, one can apply deltas using
a Design Maintenance System to a partially completed implementation. The repair
process can be stopped after any agenda item is processed, and a new delta applied.
Thus deltas can be applied at will. Such a Design Maintenance System would allow
us to perform transformational maintenance relatively cheaply, and leads towards the
goal of an Incremental Evolution lifecycle.



Chapter 9
Related Work

on Maintenance Systems

Chapter summary. We compare our work to a number of other systems that
revise results.

The major focus of this thesis is on design maintenance systems (DMS) for
software artifacts. It is built on foundations consisting of a transformation system
model and a control language for guiding transformational implementation. We have
discussed related work on those topics in their corresponding chapters. In this chap-
ter, we consider work related to systems that repair or maintain various structures,
especially software.

Such maintenance systems can roughly be classified as follows:

Informal software maintenance systems

Specification recovery

Reuse of control knowledge for transformation system

Derivation replay based on transformation system

Plan reuse and repair

Truth Maintenance Systems

Informal maintenance systems are those for which no formal software construc-
tion model exists, including the widespread ad hoc conventional practice. The rest of
the maintenance systems we discuss can be cast as transformation systems according
to the model presented in Chapter 3. Maintenance by specification recovery essen-
tially abstracts a concrete program to allow changes to the abstraction rather than
the code. Maintenance by reuse of control knowledge simply re-runs the transforma-
tion system on the modified specification; the control knowledge used in the previous
implementation is available for the new implementation. Derivation replay attempts
to avoid direct use of the control knowledge by re-applying decisions resulting from
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application of control knowledge in the previous implementation. Plan reuse tries to
reuse the construction plan of the previous implementation. Truth maintenance sys-
tems update derived inferences computed from a set of premises when some premise
changes.

We will consider systems of each type in the order given above. We summarize
each work, and compare it to ours along the following dimensions:

Representation of Artifact Goal and Design States

e Capture of control knowledge

Content and Representation of captured design history

Notion of change: informal or formal

Maintenance method

9.1 Informal Software Maintenance Systems

In this section, we examine ad hoc maintenance, the widely used tool Make, some
design recording and design recovery systems. The lesson from informal maintenance
is just what we expect; the design is needed. Work on design recovery is a natural
follow-on. Not losing the design in the first place was our starting assumption.

9.1.1 Ad Hoc Maintenance

Maintenance as practiced by the masses is indeed a sorry state of affairs (per-
haps, partly, because the development process is also such a sorry affair). Most main-
tenance is done by simple editing of source files followed by recompilation and ad hoc
testing. In this arena, there is no formal notion of a specification, functional, per-
formance, technological or otherwise. At best, an informal description of the desired
artifact exists, usually out of date and too abstract to cover many low level details.
Consequently, no explicit design is present, tying specification to implementation.
If anything resembling a design remains, it is perhaps some diagrams representing
the high-level data-flow architecture of the program. The implementation itself is
full of consequences of particular implementation methods for the various program
purposes, so that intent is swamped under technological detail. To aggravate the
problem, many applied implementation technologies are suboptimal, wrong, or coded
clumsily; dead code from previous maintenance exercises swells the volume. The only
object in the design history, if it could be said to exist, is the final design state, i.e.,
the source code.
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The representation of a desired changed is usually informal and sometimes only
a verbal sketch. Faced with a desired change, maintainers must induce an informal
specification for the program by looking through a sea of code (or remembering the
informal specification used during development!). A significant part of a maintainer’s
time is spent trying to understand what the code does, how it is related to the problem
at hand, and the impact of a possible change. Since the process is manual and the
understanding fuzzy, it is consequently error-prone and the “maintained” program
often requires debugging. Knowledge acquired by one maintainer is useless to the
next, as all of the knowledge required ends up in each individual maintainer’s head.

One can draw a motto from this:
To lose the design, give your programmer a text editor.

All of these defects were fundamental motivations for transformational main-
tenance. Formal specifications provide unambiguous intent. Validated formal trans-
forms ensure that correct implementations result from the specification. Libraries of
methods allow designers to implement by choosing from tested implementation tech-
nologies whose performance level is known. A design history capturing the relation
between performance goals and methods for achieving them capture the relation of the
specification to the code. Explicit specification deltas guide the revision of the design
history, producing a revised design history for the next maintenance step. Impact
analyses could be performed given the desired delta; semi-automatic installation of
the change is managed by a DMS. New implementation technologies can be added to
the library by maintainers, and are available for use by the next maintainer.

9.1.2 UNIX Make

The UNIX tool, Make, is used to automate the construction of complex software
systems from source files, that require compilations, link-edits, and other sundry
result assembly operations. It is especially designed to optimize the construction
process after a change has been made to one of the original source components. It
is thus an “efficiency hack” in the same sense that a DMS is an efficiency hack:
neither is technically necessary. But Make has shown its practicality in everyday
software development (read “maintenance”) environments, because most changes only
affect a small portion of the code [LS80]; consequently, only 20% of a system is
typically recompiled by Make after a change [LQ89], which provides considerable
savings in computation energy and on-line waiting time. This is precisely the same
argument we make for the utility of a DMS: changes will affect only a small part of
the implementation, and consequently will require only a small amount of energy to
implement.
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Make assumes components (and intermediate results, such as relocatable files
produced by compiling) of a software system reside in accessible disk files. It requires
a system implementer to explicitly state which files depend on which others, and
how to regenerate the content of a file when one of those on which it depends has
changed. This collection of dependencies and regenerators is in effect a dependency
net with very large grain operators. Once a maintainer has modified some set of files,
he invokes Make on the dependency net description; Make determines which files
need to be rebuilt by examining file date stamps (if DATE(filea) < DATE(fileb),
and DEPENDSON (filea, fileb), then filea needs to be rebuilt). The dependency
net avoids both the “accidental” ordering that using a linear history would induce,
as well as avoiding unnecessary work.

For Make, the functional specification of the desired artifact is captured in the
collection of source files known to the dependency net. Such functional specifications
are typically low-level program source code as opposed to abstract specifications, so
much of the design, i.e., those decisions that went into producing the source code, is
already lost. A weak kind of performance specification is defined procedurally by the
sequence and parameters of the large-grain operators (i.e., is the compiler invoked
with optimization enabled?) in the dependency description. The control knowledge
to implement the artifact is also encoded in the dependencies. Design states are
approximated by up-to-date sets of intermediate files forming a consistent frontier of
the dependency net; the final design state represents the constructed artifact. This
is very similar to notions of state used in nonlinear planners. The intermediate files
coupled with the dependencies description could be treated as a sort of design history;
they capture consequences of design selections. The only notion of change that Make
understands is implicit: an out-of-date or missing file. These changes are caused by a
programmer using an editing, moving, or deletion tool on a file. When such a change
is detected, the dependency net is consulted to determine what operator to apply.

A DMS uses an explicit formal delta to determine what changes initially, and
the design history to determine what is indirectly affected, so it does not need date
stamps.

Unlike Make, a DMS can repair a failed regeneration step by virtue of having
access to the goal structure which generates the individual transformations, and al-
ternative methods for achieving such goals. A DMS can preserve a transformation
step that follows a failed step by commuting them; Make simply aborts the regener-
ation process. Make also only considers data flows, not actual transformations; as a
consequence, only objects statically identified by the programmer are traced. A DMS
generates design decisions by executing TCL methods, and records the resulting his-
tory automatically. Errors in a Make dependency net lead to incorrect re-generation
of the product. Errors in TCL methods lead to the same problem, but are presum-
ably less likely because such methods may be used by many projects and are probably
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better tested; further, once detected, Design Maintenance System can help correct
the resulting artifact.

9.1.3 Code understanding as a maintenance prerequisite

Soloway [SJ85] suggests that a significant problem in conventional maintenance
is that of understanding how existing programs work. A particular problem is that
of delocalized plans [L.S86]: sections of program text that are widely separated in
the linear textual version of the program, that must work together to accomplish a
particular effect. Trivial examples of this include “accumulator initialization” before
a loop body, and “accumulator summing” buried deep in the loop; together, these two
fragments constitute a “sum-values” plan. Human maintainers have trouble when one
part of a plan needs modification, and the existence of the other part is not obvious,
has been forgotten (due to the complexity of the plan), or is not easily found (due
to textual gap between the parts). Soloway suggests that informal text pointers be
embedded in comments at each plan fragment that point to the other fragments to
make the other parts findable.

Soloway does not address how the maintainer knows what a program is supposed
to do (no artifact goal) or how it achieves those purposes (no design). There is
no design history; only the final code produced as a consequence. Since Soloway’s
emphasis is on understanding as a prerequisite to change, there is no discussion of
change, change representation, or installation of change.

Our DMS requires use of a formal specifications to encode program intent. The
design history captured during the implementation process provides traceability from
the specification to the implementation, providing a connection from what to how
with intervening plan structures. While we do not specifically use this information
for this purpose, it is available for the maintainer to help him understand how the
existing program achieves its purposes.

9.1.4 Informal Design Capture

Since understanding is so important for conventional maintenance, Wild
[WML*89] suggests that a hypertext [Con87] network be used to capture the de-
cisions leading to source code from the requirements, in a GIBIS-like network [CB88].
Nodes in the network represent decisions. Each decision has considered alternatives
recorded, to document dead-ends and to provide hints about later possible improve-
ments. The content of hypertext nodes is text, and relations between nodes are
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established by the software designers. It would appear to be very difficult to en-
sure that this design document captures the necessary dependencies, captures the
necessary information, and stays synchronized with the actual code.

With a DMS, we capture such decisions in the design history. Alternatives
are stored explicitly as agenda items representing OR or FLSE alternatives, and
implicitly as untried methods. Our DMS does not store relative merits of alternatives.

9.1.5 DESIRE: Design Recovery

Design recovery is intended to recapture design information used to generate
the source code to be maintained. It does not help with installation of changes;
rather, the recovered design information is intended primarily to help the maintainer
understand the existing code.

MCC’s DESIRE system [Big88, Big89a, Big89b] is intended to help maintainers
understand code by hueristically matching it against a database of “design struc-
tures”, and pointing out which parts of the code match individual structures. The
database is organized around conceptual abstractions of software engineering con-
struction technologies, such as “window management”, “process dispatching”, etc.
Each abstraction has associated with it a set of expectations; for window managers,
the notion of window, window-update, etc., are expected. DESIRE uses the tex-
tual names referenced by the program as an index into a database, either directly to
the abstract concepts, or indirectly to an abstract concept via a related expectation.
Access to an abstract concept leads to a set of expectations which can be checked
against the code. Presence of such expectations simultaneously confirms the concept
and clarifies which parts of the code perform related functions; this is similar to the
effect Soloway tries to achieve by manual means. Absence of confirming expecta-
tion is an indication that term used is either ambiguous or the technology to which
it corresponds is not in the database (which provides opportunities to augment the
database). It is not clear how much of the DESIRE matching process is automated,
although [Big89b] describes a neural-net recognition mechanism. The final result of
the DESIRE mechanisms are a Prolog-style database capturing relationships between
objects in the design and code, and hypertext-style graphic aids using that database
to inspect existing code.

DESIRE is intended to help understanding, and indirectly populate reuse data-
bases, but does not address the problems of installing changes as does a DMS.
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9.2 Specification Recovery

The simplest model of maintenance in a transformational context is to mod-
ify the specification and re-implement [Bal85a]. Of course, to do this, one must
actually have a specification. One can treat the implementation source code as an
extremely low-level specification, but then no leverage is gained over conventional
maintenance. The DESIRE system abstracts the source code somewhat. Carrying
this abstraction process to the extreme can allow one to recover a specification at a
truly abstract level, where it is easier to make changes, or at least understand the
intent of code implementing the abstraction. We call this specification recovery. With
a full transformational maintenance model, one simply never loses the specification,
and so specification recovery is unnecessary.

By simply recording the sequence of abstracting steps, a reverse-chronological
derivation history could be trivially obtained and reused by a tool like our DMS, but
often specification recovery tools do not do this.

Our DMS differs from these tools in that rather than re-discovering a specifi-
cation and/or a derivation history, we simply don’t lose them in the first place. As
much of the original design is preserved as possible as opposed to reimplementing the
abstract program from scratch. None of these plan recovery systems recapture any
performance goal information, or aid in the installation of changes.

9.2.1 Transformational Model of Maintenance

Recovery of abstract functional specifications from source code is described by
a Transformational Model of Maintenance, or TMM [ABFP86]. A domain-oriented,
transformational software construction model is assumed, even for programs not con-
structed transformationally.

The result of the process is a more abstract specification of the existing code
and the set of transformations used to implement that abstract specification. The
process consists of an analyst manually guessing the abstractions and their imple-
menting transformations, and applying a tool that converts matched implementation
fragments in the code back to their abstractions. This work also discussed forward
engineering from the abstract specification to accomplish change in support technol-
ogy, functionality, or performance, providing the overviews given in Chapter 7, and
leading to this thesis. The work describes a successful program porting project based
on these ideas; this amounts to a change of support technology by revising the set of
available transforms.
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The TMM work characterizes maintenance in terms of a design space, and
discusses choosing different paths through that space, but does not take the logical
step of actually recovering the derivation history of an implemented artifact and
then revising it to obtain another. Neither explicit performance goals or change
representations are provided. There are early hints of the ladder-construction process
for integrating functional deltas that was presented in Chapter 7, but in this thesis
we have produced theories and procedures for actually accomplishing it.

9.2.2 Program Recognition

There are a number of similar systems which try to recognize program struc-
tures; this is effectively the extraction of a more abstract functional (usually even
procedural) specification. Such systems match code against libraries of program frag-
ments in an attempt to recognize abstraction function specifications. These systems
differ from DESIRE by being more formal in their approach.

PROUST [SJ85], [Joh86] matches small Pascal programs against their intentions
coded procedurally; close matches are tolerated and the difference is diagnosed as a
program bug. PAT (Program Analysis Tool) [Nin89] uses a forward-chaining inference
engine to heuristically combine recognition of program fragments into recognition of

more abstract specifications, such as determining that a loop containing an exchange
of two data elements based on the results of their comparison is a BUBBLESORT .

Dudu [A1190] re-validates canned proofs to prove that several program fragments
work together to accomplish an abstract effect. Our definition of TCIL assumes that
proofs are associated implicitly with methods; DuDu shows the value of associating
an explicit proof with a method.

The Programmer’s Apprentice (PA) [RW88] is representative of these systems.
PA is a system of tools to help a programmer construct and modify programs in
conventional programming languages such as Ada or Lisp. PA maintains a database
of cliches, which are transformations mapping abstract programming tasks (functional
specifications) into more concrete code. Most such cliches are related to programming
domain knowledge, as opposed to problem domain knowledge. The implementation
part of such cliches are matched against programmer-selected portions of existing code
to partition it into understandable chunks represented by the functional specifications;
Wills [Wil87] describes a graph-matching mechanism to actually perform this. Tt is
not clear what happens when cliche implementations conflict or share parts. It is also
not clear if PA records the reverse derivation history of code to abstract code. Tools
are provided to allow abstract specifications to be inserted in a program, and then
transformed into actual code. Changes are made not to program implementations,
but rather to abstracted programs themselves. The change to be made is not stated
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explicitly, but an installed abstract change can be semiautomatically implemented by
transformation.

9.3 Control Knowledge Reuse
for Reimplementation

The utility of reusing transformational control knowledge to reimplement a mod-
ified specification is a simple consequence of the value of control knowledge in driving
the transformation system in the first place. The need for capturing control knowledge
was the initial motivation for TCL. We can divide control knowledge into two types:
that which is generally applicable, and that specific to implementing the specification
at hand. Tt is clear that generic control knowledge should always (be available to) be
reused in reimplementing any specification; this is why our model of a transformation
system has a method library. Control knowledge useful for the specification at hand
appears valuable for reimplementing a slightly changed version of the specification on
the grounds that we don’t expect the implementation to change much, and therefore
the generation process must be similar.

Several problem stem from using just the control knowledge without a design
history for maintenance purposes:

e the assured cost of complete replay
e unnecessary expense of resolving choices left by metaprogram

e inability to use a maintenance delta to revise implementation

The first problem is the requirement for complete re-execution of the metapro-
gram every time a change is made. We described the high cost of transformational
implementation in Section 3.3. In the face of the small-change/small-effect assump-
tion, this seems an unneeded expense. In the face of scale, even practical software
development processes give up this assumption, partitioning systems into modules
partly to keep the compilation costs reasonable, providing dependency-net manage-
ment tools such as Make for assembling modules.

Retention and repair of the design history has the potential of allowing most
of the metaprogram re-execution to be avoided. This would be fruitless if the entire
design history must also necessarily be scanned (as in fact our design history proce-

dures pretty much do during BANISH and/or ladder building), but with the aid of

a nonlinear dependency net on transformations there is some hope of avoiding this.

The second problem has to with the availability of certain types of choices in the
design space: how are subproblems decomposed, and where should transformations
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be applied? With a goal-oriented metaprogramming language such as TCL, a perfor-
mance goal may be decomposed in many possible ways, of which only a few at best
are actually useful for the specification at hand. Similarly, applying a transformation
must choose an appropriate locater from within the allowable locale. The control
knowledge does not necessarily contain this information, especially if it generic. The
actual choices made are precisely what is captured by the design history. When re-
playing just control knowledge, such choices must be resolved again. Our methods for
integrating a delta into a derivation history in the common case go through effectively
zero effort to “pick” a locater; it is already recorded.

One can specialize the control knowledge to the particular specification being
implemented, to constrain decompositions and locales until this control knowledge
approximates a design history; as an extreme, one can consider the design history we
have defined as a fully specialized metaprogram. If we assume that human agents
generate such control knowledge (metaprograms), it very expensive to generate such
specific knowledge; further, we run the risk of specializing the control knowledge so
much that it no longer applies when we change the specification.

Lastly, given just a changed specification and control knowledge, what can we
do to take advantage of any knowledge of the change? Our DMS procedures for
delta integration into a design history provide us with concrete methods for taking
advantage of such knowledge. We consequently think that one should have both the
design history and its generator: the design history to cache low level details about
what precisely was done, and the generator to use when repairing the design history
after parts inconsistent with the delta are stripped away.

9.3.1 PADDLE: A Metaprogramming System

The TT system for constructing software transformationally [Bal85a] represented
design states as functional specifications written in the GIST specification language
[BGWS82]; no performance specifications exist. PADDLE [Wil83] is a procedural
metaprogramming language to guide the transformational implementation process.
The operation of the PADDLE was described in Section 4.3.3. It was suggested
PADDLE be used for replay purposes after specification was changed, as well as for
initial development. In practice, the PADDLE program would be changed in parallel
with the specification, and then replayed [Bal85a]. No explicit notion of change is
used.
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The model of replay assumed by the PADDLE design is complete re-execution
of the metaprogram. There are several problems specific to PADDLE:

e FEarly abort prevents maximal replay
e Mis-applied transformations during replay

e Unnecessarily limited ability to repair failed plans

Early abort prevents maximal replay

The purely sequential execution model used by PADDLE aborts execution of
the metaprogram at the first sign of trouble, usually on encountering a transform
which cannot be applied. It may consequently stop replaying when there remains a
significant number of still-reusable design steps. The plan repair performed by DMS
retains all steps not obviously invalidated by the specification delta, by BANISHing
transformations that no longer apply and rearranging the design history accordingly.
This is only possible because TCL explicitly allows nonlinear sequencing of plans,
and because the DMS understands how to reorder transformations (DELAY).

Misapplied transformations during replay

A PADDLE metaprogram that successfully implements an initial specification
need only choose correct locaters for applied transforms for the specific implemen-
tation being attempted. Each locale constraint need only choose a unique locater
for that particular specification. In a changed specification, the same locale con-
straint may be ambiguous, and so replayed transforms may be applied in inappropri-
ate places. Wile [Wil83] notes this shortcoming, and suggests that a richer language
is needed in which the locales can be more accurately expressed. TCIL does not
directly provide a richer constraint language (although we have identified useful op-
erators for such in Section 4.2.1), but does compute replacement locaters from deltas
and the design history that cause at least equivalent local effect. Further, since our
delta integration mechanisms re-validate replayed transforms, if one should get mis-
applied, it will be detected and BANISH ed. Such re-validation is only possible when
performance goals are available to be checked.

Limited ability to repair broken plans

PADDLE metaprograms do not have performance goals attached to plan steps.
Consequently a failing metaprogram plan cannot be replaced by another plan that
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achieves the same effect, precisely because no other plans are labeled with information
describing their effect. TCL metaprograms, in contrast, have explicit post-conditions
describing performance goals, and failure by one method to achieve an effect can
be alleviated by backtracking to another method with a post-condition achieving a
similar or stronger effect. Thus TCL contributes to the repairability of a failed plan.

9.3.2 Glitter: A Goal directed Metaprogramming System

For the TT system, the difficulties caused by the absence of goals in PADDLE

were recognized:

“... a major impediment is the operational rather than specificational nature

of PADDLE...”

[Bal85a]

The Glitter system [Fic80, Fic82, Fic85] is also a metaprogramming system op-
erating on GIST specifications. Its operation is described in Section 4.3.3. Glitter
provided “transformational” goals, which can be considered process and/or perfor-
mance goals, and has a TCL-like style. This is an improvement over PADDLE, but
it does not appear that Glitter was ever considered for use in a maintenance context.
If it had, it would have suffered the problems of replay of a pure metaprogramming
system as outlined earlier.

9.3.3 Hueristic Plan Repair

LP [Sil86] is system for learning control knowledge for solving algebraic equa-
tions. It assumes an underlying algebra solving system, PRESS, implemented as a
transformation system with control mechanisms as described in Section 4.3.3. PRESS
control knowledge consists of TCL-like methods containing plans with postconditions
(performance goals such as “number of occurrences of variable X”). LP is presented
with a problem-solution consisting of a sequence of algebraic formulas. From this
sequence of formula-states a derivation history can be trivially extracted by compar-
ing successive pairs of states. LP explains the derivation history by partitioning it
into sections that achieve interesting effects such as leaving an equation factorable (a
performance goal). Essentially a sectioned sequential plan with goals for each section
is learned. This corresponds roughly to the recursive TCL structure

ACHIEVEBY (Goted, €, SEQ(ACHIEVEBY (G yectiongoats - - -)s - - )
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LLP is doing more just design recovery, because it augments the support technology.

One can treat LLP as a maintenance system by presenting it first with an algebra
problem and its solution, and then presenting it with a slightly changed algebra
problem (an implicit functional delta). While learning new methods is certainly an
interesting way to improve a system’s problem solving ability on slightly different
problems, it is not our concern here. Rather, we are interested in how LP handles
failures in a learned plan when applying it to the modified problem.

A learned plan is executed sequentially. At each plan step, the goal for the
section is tested, and the balance of the section is skipped if successful. This allows
serendipitously accomplished steps to be ignored. If the section goal is still false, the
plan step itself is executed, and if successful, the next step is tried. If the plan step
fails, other methods with identical postconditions of the failing plan step are tried
until one is successful, at which point the next step is tried, or all fail. Should all
methods fail, then LP attempts to find a method whose postcondition satisfies the
preconditions of the failing plan step, and whose preconditions match the current
state; this has the effect of dynamically inserting repair steps. Should this fail, L.P
gives up. All of this logic is wired into LP’s control mechanism.

Our DMS operates differently. Steps carried out by favorite plans with fallback
plans are captured neatly by the TCL. ACHIEVEBY action, and only a small amount
of hardwired control mechanism is associated explicitly with it. Unlike LP, TCL will
not leave out a plan step, because we assumed that TCL methods capture precisely
what is needed to accomplish its postcondition in a provable way; optional steps
can be easily described by ACHIEVE goals that are sometimes achieved serendipi-
tously. Similarly, TCL execution does not dynamically insert steps; need for this is

an indication of a missing ACHIEVE goal.

9.4 Maintenance via Derivation History Replay

The idea of reuse of design decisions is not new. To do so with automated help
requires some sort, of formalization of the software process, which is invariably chosen
to be transformation systems. Considering the utility of the state space model, and
the broadness of the transformational model we formalized in Chapter 3, this is also
not a surprise. A number of systems using these ideas have already been built, and
we cover them in this section.
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What distinguishes our work from that presented in this section is:

e A transformation system model including explicit performance specifications

e A nonprocedural transformation control language in which all the control knowl-
edge is explicitly stated

e A design history that captures relations between plans and performance goals
e A formal notion of delta

e Procedures for revising the design history controlled directly by an explicit delta
e Methods for revising derivation histories based on commutativity

e Re-ordering of history, and modification of replaced transformations (cf.

DEFER and PRESERVE) dependent on the actual delta.
We make these remarks here to avoid repeating them in each subsection.

In particular, we want to emphasize that naive replay (simply re-applying still-
legal decisions, skipping now-illegal decisions from a history) is relatively easy but
suspect without revalidating that those replayed decisions serve a useful purpose
according to the (possibly-revised) performance specification.

9.4.1 Replay in SINAPSE

The SINAPSE transformation system [DKMW89] replays eritical design selec-
tions. A “specification” for SINAPSE consists of a functional specification for solving
differential equations, and a set of named design choice, named design selection pairs
which are used to guide the refinement of the functional specification; such pairs act
as a kind of partial performance specification. A built-in control mechanism makes
most of the design selections either by default or by selection of a domination selec-
tion according to hardwired criteria which effectively act as a procedural encoding of
the rest of the performance specification. When a design choice is proposed whose
name matches that of some member of the “specification”, then SINAPSE chooses
the corresponding named selection from the “specification”. By changing the de-
cision choice/selection pairs in the “specification”, different implementations of the
functional specification are produced. Design choices stated in the “specification”
which are not encountered during the implementation process are simply ignored. In
practice, the SINAPSE system takes only a few minutes to go through the entire
refinement process, and so it is practical to change the functional specification and
rerun the transformation process; this appears to be caused by limited design selec-
tions. This aspect of SINAPSE treats the specified performance specifications as a
kind of constrained metaprogram.
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There is discussion of actually storing a tree of choice/selection pairs, with states
containing functional specifications attached to each instantiated branch. Change of
performance is accomplished by pointing to a choice in the tree, forcing another
selection, and restarting the transformation system on the design state corresponding
to the branch leading to the selected choice, dynamically generating new choices
and selections to reimplement the balance of the specification. The history replay
mechanism has been used to effectively produce a decision tree on a small number of
design decisions, leading to alternative implementations. SINAPSE has successfully
synthesized different practical finite differencing codes for a real application using
such histories to guide the process.

9.4.2 Cheatham’s Program Development System

The Program Development System (PDS) [CHT81, Che84] was used to trans-
formationally implement and maintain sizable programs, including targeting a net-
work communications system for 4 different machine architectures and porting the
EL1 compiler. PDS maintained a derivation history of the modules of system as
described in Section 5.4.4, similar to that maintained by Make. Maintenance con-
sisted of changing an abstract module (corresponding to computing some é¢(fo)),
changing a transformation set (corresponding to applying some d¢), or changing the
transformation sequencing rules (corresponding to applying some éq), and then re-
generating modules affected by these changes as determined by the dependency net.
This solution has the same disadvantage as that of Make: large grain dependencies.

9.4.3 The Zap transformation system

While the focus of Feather’s Zap system [Fea79] was to transform moderate
size programs, it is one of the earliest for which the notion of maintenance is promi-
nently discussed. The fundamental problem for Zap was to build interesting control
procedures to enable practical transformation of moderate size programs. The fun-
damental control concept is that of a CONTEXT, which provides pattern-directed
transformation. The operation of CONTEXTs were described in Section 4.3.3, and
can be summarized as nonprocedurally determining a sequence of transformations
to achieve a state in which selected portions have a form specified by the current
CONTEXT. The individual CONTEXT's used seem to be very specific to the pro-
gram being transformed. Sequences of CONTEXTSs form a metaprogram for gen-
erating an entire implementation. Such sequences are established by constructing a

script file containing a series of CONTEXT descriptions. An individual CONTEXT
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can be considered analogous to a TCL method with postcondition requiring a par-
ticular functional specification fragment; the script file can be considered a high-level
derivation history.

Maintenance in the Zap environment consists of modifying the original func-
tional specification, and naively replaying the script file. It is not clear what happens
when a CONTEXT fails to achieve its goal; we would expect the script is aborted as
successive CONTEXTs appear to build on structures introduced by preceding ones,
but one could simply abort the particular CONTEXT and go on to the next. Zap
successfully reapplied such a script to a changed telegram word-counting program.
Most of the CONTEXTSs successfully completed due to their nonprocedural nature.
This suggests that the nonprocedural nature of TCL method invocation will be useful
during dynamic replay.

9.4.4 Bogart: Replay of a tree-structured
derivation history

The BOGART system [MBS87] stores a tree-structured derivation history repre-
senting the recursive refinement of components of the original functional specification.
We described the history structure in Section 5.4.3. Control knowledge is represented
as transforms which refine components into connected sets of subcomponents. The
original functional specification can be changed directly, and BOGART will attempt
to replay the derivation history to reimplement the specification. Deleting a com-
ponent obviously deletes the refinement history of that component. Adding a new
component effectively adds an empty refinement history for that new component.
Changing a component constraint does not directly affect the history, but may affect
whether a component is still refinable by its history. The replay process is top-down
for the refinement history of each individual component. FEach derivation history
entry which refined a component is retried; if successful, the subhistory is replayed.
Failure of a component to refine according to the history aborts replay of that subtree
of the history; however, other subtrees can still be replayed. The BOGART system
required one minute per replayed step, due to an expensive constraint propagation
system; only small designs were tried.

If our estimate of 10, 000 transformations per average implementation is correct,
the BOGART system cannot produce a timely result. Ignoring performance goals,
our experimental DMS replayed unconditional transformations at the rate of tens
of milliseconds each; admittedly, conditional transformations can take significantly
longer but often even conditional transformations trivially commute because of the
the non-overlap of locaters.
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Our DMS has two other significant advantages. First, failure of a design history
element simply causes DMS to remove that element, and following, but not seman-
tically dependent elements are exposed for continued replay. Secondly, BOGART’s
refinement replay, while always producing a functionally correct result, may no longer
achieve the unstatable performance goals that were achieved by the original deriva-
tion history on the original specification. Our DMS re-validates transformations when
they appear reusable to ensure that performance goals continue to be met.

9.4.5 Replay by use of heuristic correspondence

Goldberg [Gol89] discusses a preliminary derivation replay system for the KIDS
(Kestrel Interactive Development System) enhancement to the REFINE transforma-
tion system. We go into considerable detail because it is one of the few working
history replay systems for software construction.

We have already examined, in Section 4.3.3, his tactics (procedural metapro-
gramming) language in which primitive tactics actually change the program and “ab-
stract” tactics provide control; tactics are parameterized (see the example tactic in
that section). Goldberg records a derivation history as a time-ordered trace of the
calls (Section 5.4.2) to each tactic (abstract or primitive) along with the parameter
values used at each call, especially the values of program-parts (equivalent to our
locales).

The need for history replay is triggered by performing arbitrary edits on the
original program. Changes to “specifications” are limited effectively to functional
deltas. This is due to REFINE’s lack of performance measures or performance goals.

Replay consists of attempting to re-execute each tactic, in order, from the deriva-
tion history with suitably revised parameter values. The revised values are generated
roughly by looking up original parameter values, and substituting their equivalents,
from a hueristic correspondence relation between program-parts of the original pro-
gram, and program-parts of a revised program. Consequently the emphasis is on
computing such a correspondence relation.



272 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS

According to Goldberg [Gol89, page T]:

This is called the correspondence problem. Our method for establishing a
correspondence is heuristic. It relies on three mechanisms:

e Name Correspondence: The definition of the same identifier name in the

program establishes a correspondence!.

¢ Structure Correspondence: Code appearing in the same (relative) position
within the abstract syntax tree corresponds.

e Parameter Correspondence: The execution of a tactic may cause a tactic
variable to be bound to some code. Code bound to the same variable
corresponds.

An initial correspondence relation based solely on name correspondence be-
tween the original and revised programs is constructed before starting replay. The
correspondence relation is updated as the original tactics are replayed by identifying
program-parts bound to the same tactic variable. If a tactic about to be replayed
introduces a gensym’d variable name into the original program, then replay of that
tactic will introduce yet another gensym’d variable name into the revised program; a
correspondence between the two gensyms is added to the correspondence relation.

When replay of a tactic is attempted, its parameter variables must be bound.
Certain values (constants like resource bounds, etc.) are copied intact from the orig-
inal history. Otherwise, values for tactic parameters which are program-parts are
obtained by lookup of the original value in the correspondence relation, and replace-
ment by the corresponding value.

If the original program-part cannot be found in the correspondence relation,
an abstract-syntax-tree tracing heuristic is used to locate the corresponding part.
This part is found by climbing up the abstract syntax tree of the original program
(both the original program and the modified program must apparently be generated
in parallel, somewhat like the states in our abstract ladder) starting from the place
identified by the original program-part, until some point n in the tree is found that
is present in the correspondence relation. This defines a relative tree-path p from
n back down to place defined by the original parameter. The place corresponding
to the original parameter is then found by starting at corresponding point in the
revised abstract syntax tree, and following the path p. This implements the notion of
structure correspondence. If p does not apply in the revised state, then the replay
step is broken and manual intervention is required. There is no discussion of what
can be manually done to alleviate failure of that tactic, nor whether intervention

'We assume Goldberg means a variable declaration or assignment in the program, and not in the
metaprogram.
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is required immediately on tactic replay failure, or is delayed while attempting to
replay other tactics. It does appear, since replay is done in the context of KIDS, that
the software engineer could simply take the partially implemented specification and
continue a conventional transformational implementation.

Since his high-level tactics mechanism is not implemented, he cannot play (let
alone attempt replay) those tactics steps, and so he has not tried the parameter cor-
respondence ideas. However, Goldberg has replayed derivations of up to 40 primitive-
tactic steps in length for a high-performance topological sorting program. Even lim-
ited to replaying primitive tactics, he sees these results as “rather impressive.”

Comparison to DMS The correspondence problem [MF89b] is the identification
of objects in the new problem which corresponds to objects in the problem for which
the design history was generated. If one can solve it, then replaying the design history
is straightforward. Goldberg goes to considerable lengths to solve it, with only partial
success as we will see below. This problem comes about when one has an old problem
and design history, and is presented with an entirely new problem. With DMS, we
finesse this problem by insisting that a formal delta to the old problem be given to
define the new problem; inherent in the delta is the correspondence. It is interesting
that systems using correspondences do not compute a delta simply to define the
correspondence.

Our notion of locater as a constraint on bindings subsumes that of program-
parts as tactics parameters. Our DMS unsurprisingly records a derivation history
in almost an identical fashion to Goldberg, but additionally has a design history
containing goal information and indexes back into the metaprogram, connected to
the transformations in the derivation history. This allows the DMS to re-validate
a replayable transformation, and to find substitute transformations or methods for
those that cannot be replayed.

Goldberg’s system only handles the effect of functional deltas, but never sees
an actual delta. For DMS, we found the functional deltas to be extremely helpful
in guiding the rearrangement of the derivation history and computation of revised
locaters, by providing both a focus for the region of change, and also providing means
for generating potential new locaters (by taking advantage of the structure of the
deltas, implemented as subtree-tracing). As a consequence of not having the delta to
guide the manufacture of replacement locaters, Goldberg must have the tree-walking
scheme to find correspondences.

Goldberg’s hueristic correspondence scheme appears to fails under some fairly
simple circumstances. The name correspondence hueristic fails if the applied delta
simply renames a variable. The structure correspondence hueristic must fail when
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subtrees of a design state are rearranged, either when changing the specification or
by insertion of a transformation like a commutative law into the derivation history.
Neither of these changes will confuse our DMS. We do see value in using the hueristic
correspondence for generating potentially useful locaters; however, the DMS also
validates their legitimacy (cf. discussion on DELAY in Section 7.2.1). If one has
little knowledge of what the transforms actually do, i.e., they are opaque, Goldberg’s
hueristic correspondence is probably a reasonable approach, so we see our techniques
as those of first choice, with Goldberg’s being backup.

Failure of the correspondence heuristic can cause a tactic to be indetectably mis-
applied; our DMS would verify its correct role in the plan generating it. Furthermore,
there appears to be no way to undo a misapplied transformation; the DMS can use

BANISH to effect dependency-directed backtracking.

Goldberg provides no theory as to why his method should work at all other than
implicitly leaning on the requirement that all primitive tactics should be correctness-
preserving. Failure to apply a tactic leaves further useful execution of Goldberg’s
replay process in doubt, as the correspondence structure on which he depends is not
updated. Assuming that Goldberg continues the next tactic in the face of failure of
the current one, the maintained correspondence structure must diverge further from
the true correspondence as failed tactics accumulate, either leading to more failures,
or worse, misapplied but undetected tactics. In contrast, the DMS derivation history
rearrangements have been shown to be legal. The DMS drops undesirable transforms
and their dependencies. Retained transformations are validated against their place,
and therefore purpose in the design plan. A failed DMS transformation has an index
back into the metaprogram to provide the opportunity to manufacture alternatives
explicitly allowed by the metaprogramming language.

A contrast: PADDLE [Wil83] represents a derivation history generator, and
is re-executed in entirety in replay. Goldberg’s tactics language is also just such
a generator; however, having one replayed a tactic trace, it is difficult to relate the
reused tactics back to their generator. We try to walk a middle ground with TCIL and
our replay scheme, in which reused transformations retain their place in the design
history and thus continue to justify their purpose, as well as their index back into the
generating metaprogram via agenda item action slots; this provides a way to locate
TCL methods when plan repair is needed.

9.4.6 XANA: Replay for DIOGENES

XANA [MF89b] is the mechanism used to replay transformational derivations
of search algorithms in DIOGENES, specifically for the purpose of re-implementing
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a changed functional specification. Unlike BOGART, DIOGENES applies arbitrary

tree-transforms rather than just component refinements.

We have simplified the explanation of XANA somewhat, causing a considerable
change of terminology in an attempt to be as consistent as possible with that of this
thesis.

For DIOGENES, a specification is simply functional; no other performance spec-
ification is used. Each state s is a tree representing a functional specification. Each
tree node has an identity, consisting of the label i for the transformation H[i] = (¢;,(;),
that generated it, and the relative path for that node from the point where the root
of the tree transform ¢; was applied. States can share tree nodes from earlier states.

An XANA derivation history is a digraph forming essentially a dependency net
of tree nodes on applied transformations. The history consists of set H of transforma-
tions, each H[i] consisting of an pair ¢ : (¢;, ;) implicitly labeled by the transformation
index, where ¢; = (k,path), with k being a label on some other transformation in the
history, and path being a relative tree locater, a path (as described in Section 3.1.7)
from a root to some subtree. The effective locater used when applying the transform
t; is found by concatenating all the relative paths found in the chain of transforma-
tions selected by following the backward pointing indices k. This computation can be
avoided by naming the tree nodes as described below, and interpreting each transfor-
mation as meaning “apply t; at to the tree node labeled (k, path)”. Our explanation
requires each history H to have a distinguished transformation 1 : (ny, (1,0)); this
introduces the functional specification by rewriting the empty specification to the
desired specification, ny = ¢ = fo, obviously being a non-property-preserving trans-
form. This requirement allows us to generalize both the global and relative paths
used in [MF89b] into the single notion of relative path.

The transformations are recorded in the order applied by DIOGENES during
the original implementation. Replay is in the recorded order. This order is one of the
many legal equivalent-effect topological sorts of the history according to the depen-
dencies; technically, any such sort for application order would be legitimate, but only
the recorded order is used. The reason is because transforms are actually conditional,
and can inspect tree nodes above or below the the point of transform application; the
inspected tree nodes (“weak dependencies”) appear not to be recorded in the history.
The very fact of their inspection adds additional implicit sequencing constraints on
the history that the recorded order honors, but other equivalent topological sorts
may not. In contrast, our DMS will actually rearrange the order, substituting differ-
ent transforms and/or locaters as required by the delta; the necessary sequencing is
maintained by the requirement that reordered transformations provably commute.
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For XANA replay, a new specification ¢ = f} is created, defining H'[1]; this
is an implicit delta. A correspondence between the tree nodes in the design states of
the old and new histories is computed by inspecting the relative paths stored with
each transformation. Transformations from H are sequentially copied to H' if their
effective locater (computed using the new history) is still valid and the transform
still applies. Should the transformation fail to be reusable, there is no recovery,
because unlike DMS, there are no performance goals or alternatives recorded in the
history; that transformation is simply skipped. Before replay, certain transformations
in H can be manually marked as unreusable; the purpose of this is presumably to
allow different performance goals to be achieved. There is no discussion of control
knowledge or how it might be used in the replay process.

The relative path idea is similar to the technique actually used in our experimen-
tal system to trace subtrees during rewriting. The subtree tracing process produced
the revised locaters without going through a British Museum algorithm.

Mostow tested the replay mechanism by perturbing a specification and running
the replay process. For specification changes which were merely parameter substitu-
tions, the derivation history was completely replayed. Specification changes substi-
tuting dissimilar constraints allow all steps but those involving the constraint to be
replayed. Deleted constraints caused the replay process to terminate early because
some subsequent steps depended syntactically on their presence. Marking such super-
fluous steps as useless allowed all the remaining steps to be replayed; Mostow suggests
a goal structure would allow such steps to be automatically detected and deleted. For
DMS, simple parameter substitution will always replay completely because such sub-
stitution will never prevent transformations from being swapped. Spurious syntactic
dependencies are also handled by the DEFER mechanism. Finally, DMS does retain
the performance goal history, although we have made no effort to remove transfor-
mations that achieve superfluous effects.

Like our DMS, XANA replays old transformations as long as they continue to
apply (modulo lack of validation), so a manually applied transformation is retained
over multiple changes unless invalidated. However, XANA should fail to replay parts
of the history that apply to a part of the functional specification which is moved en
masse by the functional delta, because the correspondence between the moved part
of the specification and the original is lost when the delta is applied. The DMS use
of a functional delta prevents loss of this correspondence.

A more serious objection is that XANA’s replay scheme depends on the repre-
sentation of the transformations; in particular, on the notion of tree path with respect
to a root. XANA would not work if graph transformations were used, mostly because
the notion of relative graph locater is not well understood. Our methods for design
history integration are not sensitive to the representation of states or transformations.
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9.4.7 ARIES: Specification Evolution

The ARIES project [JF90] is intended to provide assistance in the construction
of functional specifications, prior to transformational implementation. It does not
provide for the construction of performance specifications. In one sense, this work
is complementary to ours, because it is focused on construction of the specification,
rather than maintenance of the implementation. However, it is founded on the no-
tion of using and modifying derivation histories, and so it is related to our work in

Chapter 7.

We have discussed how the functional specification fy transformed by a trans-
formation system is constructed by applying non-property-preserving transforms to
the empty specification ¢ (Section 5.2). Work by Feather [Fea89a], leading up
to the ARIES project, defined an “elaboration” effectively as a history H, com-
posed largely of non-property-preserving transforms n; applied to an approximate
functional specification f_j.,g(m,) to produce the exact functional specification
Jo = (IWH ) ( f=tengtn(r,))- Such non-property-preserving transforms were termed “evo-
lution transforms”. The purpose of an elaboration is to allow the approximate spec-
ification f_jcngum(m,) to serve as a “white lie”, or abstraction of the real specification
fo [Bal85al, for expository purposes. An unstated assumption is that the essential
meaning of the white-lie version of the specification is retained in the real specifica-
tion.

For this idea to be useful, one must manufacture such elaborations. Feather
suggested that new transformations can be added to the tail of an elaboration, or
that transformations on the tail can be undone in reverse order of addition. Our DMS
derivation revising mechanisms can be used to extend this to modifying elaborations.
One might wish to apply a functional delta 6y to f_ingmm,) if the “white lie” is
inconvenient, producing H/ = 5;1 + H, as a revised elaboration producing the same
fo- Using (Section 7.4.2) INTEGRATEMIDDLE ¢( f_iengin(#,), 05,7, Hn) to insert a
delta in the middle of H,, or (Section 7.2.3) BANISHATPOINT (H,,j) to delete a

now-unwanted delta would be useful for adjusting the exact specification.

Feather goes on to describe a scheme to merge “parallel” elaborations (derivation
histories H,1 and H,s divergent from f_;) into a single elaboration H,,.rpea. The
purpose of this is to allow separate aspects of desired functionality to be independently
developed from a common approximate functional specification, and then to combine
these aspects to generate an exact specification containing both. This process operates
roughly by merging transformations that do not interfere into the resulting history,
much like our PRESERVE step (Section 7.4.1). A related idea for merging software
enhancements by combining program “slices” [HPR87, HPR88] works by merging
non-interfering portions of design states: fy is obtained by merging the slices of

Ho(f-x) and Hoo(f_4).
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DMS classifies its deltas according to what input of the transformation system
is affected. All ARIES evolution transforms are functional deltas 6; by DMS stan-
dards. ARIES transforms are classified further, according to their effect on a GIST
specification, as follows [JF90, p. 241]:

e Behavior changing

o Structure-adding (adds Type declarations, etc.)

e Replacement (Rename Concept, etc.)

e Terminology elaboration (“adding or changing an existing declaration”)
o Abstracting (makes spec more abstract by discarding detail)

e Approximate unfolding (replaces use of construct with nearly equivalent con-
struct)

e Unfolding (definition substitution or refinement) such as interposing a buffer
between agents; also implementation decision)

e Reorganizing (restructuring without changing meaning)

e Data flow modifying (change flow without affecting meaning)

The Reorganizing, Data-flow modifying, Unfolding, and Approximate-unfolding
transforms appear to serve as architectural implementation decisions rather than
specification constructing operations (compare to our discussion on architecture in
Chapter 10). The types of evolution transforms seem to derive from the particular
structure of GIST as a specification language; we speculate that each functional spec-
ification formalism will induce a set of evolution transforms unique to that formalism,
although the set may be similar in style to those listed here.

The ARIES evolution transforms affect a semantic net possibly containing vir-
tual semantic links that represent the specification. This is an unusual specification
representation, but fits within our model of states; virtual relations can be modeled as
cached inferences. Some semantic relationships used in ARIES evolution transforms
are:

e component: relations between modules and their components

e entity-relationship: specialization-of, parameter-of, type-of, instance-of
e data flow relations: between producers and consumers of values

e control flow links: control-substep and control-successor

e fact flow links: accesses-fact, modifies-fact between processes and declarations

of facts used/modified

o state description links: associating statements and events with their pre- and
post- conditions

Fact flows exist because the specification formalism explicitly allows statement of
information flows; they are eventually turned into low-level dataflows. Operations
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on the semantic network are used to define the evolution transforms. The authors
observe that since the set of semantic links is incomplete, an evolution transform
library based on existing links is likely to be incomplete.

Merging elaborations requires detecting when two evolution transforms do not
interfere. We have discussed in Section 7.2.2 how this is done for the ARIES semantic
net representation.

Effort is spent to make evolution transforms retrievable by effect, described in
terms of such network operations. Queries are made to an evolution transform library
in terms of semantic network manipulation operations desired. This has the effect
of defining methods with performance predicates for choosing evolution transforms.
The authors expect that preconditions on evolution transforms will allow ARIES to
plan more complex evolution transforms than directly requested by the specifier.

We assume that all transformations generated in a transformational implemen-
tation from the functional specification participate in plans that achieve a statable
purpose. What is remarkable about the ARIES work is the idea that constructing
specifications by aspects also has such purposes. We do not know how to encode such
purposes with performance predicates because of the non-property-preserving nature
of the transformations involved; this is clearly an area for further research.

9.5 Truth Maintenance Systems

A DMS bears many similarities to Truth Maintenance Systems (TMS) [Doy78,
CRMT79, Doy79, MD80, Doy83, McD82, McD83, Pet87]. In this section we outline
the analogy, and then consider how effective one would be for design maintenance.
We consider TMSs because they initially attracted our attention as having the right
kind of revision properties for maintenance.

9.5.1 TMS Essentials

TMSs can be thought of primarily as rule based inference systems, with a re-
pair mechanism used to fix inference chains whose facts/conclusions are found to be
incorrect when tested against an external model. TMSs are generally used as a com-
ponent of a larger, domain-specific problem-solving system (PSS), and are used to
reason about a problem, and to identify potential points of interest in the problem
description.
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A TMS is initialized, by the PSS, with a set of inference rules, and a set of
atomic facts. Facts each have a truth status of true or false, some acquired by direct
assertions from the PSS. The inference rules are used by the TMS in two ways:
actively, to produce new facts with truth status, and passively, as a set of relations
between the facts.

In the active mode the rules are used to infer new facts and their corresponding
truth status; the actual control regime (forward, backward or mixed) tends to vary
according the ambitions of the TMS designer [Pet87]. Thus the extant facts in the
system at any instant are the assertions and/or consequences of the set of inference
rules that have run up to that instant. It is important to note that there are potential
facts (and statuses) that could be inferred by rules, but have not, up to the instant
in question. The TMS does not concern itself with potential facts. Unlike a pure
production system, however, the fired rules and their consequences are retained along
with their relationships to the extant facts. A TMS can provide explanations of its
conclusions by tracing the fired rules.

A set of facts and fired rules are consistent if the fact statuses match the con-
clusions that the fired rules would draw if individually re-run on a database of facts
whose truth status was that of their assertions. Such a state can be achieved by
a batch-executed consistent labeling procedure [Rus85]. A set of rules connected by
particular facts may not have a consistent labeling. Because the batch procedure
can be slow, it rarely done; usually a consistent state is incrementally constructed by
addition of single, consistent new facts [Rus85].

A newly asserted or inferred fact (status), however, may be inconsistent with the
extant facts. This causes the TMS to attempt to resolve the inconsistency, by chang-
ing the statuses of the extant facts in such a way that that inconsistency evaporates,
while treating the fired rules as constraints to be honored among the extant facts?.
No new rules are fired. If a new consistent labeling can be found, then the result of
the resolution process is a list of facts whose status has changed in order to make the
extant fact base consistent with the fired rules. The PSS then processes this resulting
list to either validate it against the world, or to choose some new sub-problem to
consider.

Many possible sets of status changes may achieve consistency; since some facts
are “more believable” than others in most problem domains, special resolution rules
are sometimes specified (possibly by the PSS) to control which facts the TMS will
consider for revisions first [Pet87].

2A trivial strategy for achieving this effect is to change the status of the newly asserted /inferred
fact; since the new assertion /fact status is presumed to be more recently validated by external means
than other facts from the PSS viewpoint, this trivial method is not used.
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Justification-based TMSs (JTMS) [MS86] are willing to propose changes to the
status of any extant fact, either asserted or derived by rule application. Assumption-
based TMSs (ATMS) [dDR*78, dDSS77, deK84, deK86a, deK86h] treat PSS asser-
tions as the key facts to consider for truth status alteration; other facts produced as
consequences of inference rules will get revised as a consequence of consistency adjust-
ment, but the presumption is that the assumptions are the ones in which the PSS has
the most interest. ATMSs are consequently quite useful for diagnosis; assumptions
about the correctness of the artifact are postulated by the PSS, the consequences
drawn by the ATMS inferences, and those consequences validated by the PSS against
the actual artifact. Contradictions of consequences found by the PSS are asserted,
causing the ATMS to propose certain correctness assumptions need revision, and thus
potential fault sources are exposed for the PSS to test.

The distinction between extant and potential facts leads to a peculiar effect:
the consistency algorithm operates on a closed-world assumption with respect to the
extant facts; no account of conflict with potential facts is attempted. This is obviously
a concession to the cost of inference.

As a general rule, the process of adding new facts and revising consistency of
the fact base are interleaved.

9.5.2 Relation to a DMS

In our context, there is an analogy to a Software Development System (SDS)
[Fre87] with an DMS to a Problem Solving System with a TMS. The Software
Development System consists of an organization, with goals to develop software, and

the DMS corresponds to a software constructor/maintainer®.

Like a TMS, the DMS provides the low level construction/maintenance/focusing
mechanism for the SDS. The SDS defines the initial assumptions (software func-
tionality and performance requirements), and the inference rules (domains, domain
semantics (rules of transformational exchange), refinements, and control resolution
heuristics). The DMS draws “conclusions” (implementations by applying transfor-
mations) from the “assumptions” (specs) given by the SDS. The controls and trans-
formations fired are stored for later reuse. Like a JTMS, the DMS can explain parts
of an implementation by tracing the fired transformations and control heuristics, and
like an ATMS, can explain what parts of the specification control what part of the
implementation.

3Unlike the PSS, the SDS is for the near future most likely to be an informal system.
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In spite of the similarity, however, a TMS cannot serve as an DMS, for a number
of reasons:

1. A TMS manipulates atomic facts. The DMS manipulates structural relations
between design entities.

2. Atomic facts have truth statuses which are independent of other facts.
Structural relations between entities are not “true” or “false” (although one
could treat the existence of that relation as a boolean) but may exist in a num-
ber of different design states. This related to the frame problem [Pyl87]; each
structural element in an DMS has positive support from the transforms which
generated it, and negative support from transforms which delete it.

3. Denying a fact simply changes the status of the fact in a TMS; in an DMS,
denying a structure is tantamount to say “that spec/implementation simply
won’t do.”

4. A proposed fact’s inconsistency is easily detected in a TMS (the fact is present
among the extant facts with the opposite truth status); in an DMS, denial of a
structure’s existence does not appear to contradict anything.

5. TMSs seem to be natural in problems in which the set of facts is relatively
fixed, so recording them all explicitly is reasonable. DMS operates in the do-
main of software construction, where the set of currently non-existing structural
relationships is unbounded, and storing them simply isn’t practical.

6. Repairing the inconsistency of a TMS fact-base requires running a repair pro-
cedure which depends only on the structure of the TMS; no new rules are fired,
and no rules are “unfired”. Finding a new implementation requires the DMS to
run a repair procedure which depends on the control heuristics, requires previ-
ously applied transformations to be dropped (as they are no longer relevant),
and new rules are likely to be fired to produce new structures.

7. With a TMS the validity of an inference is never denied?®, but the validity of
transformations may be denied to the DMS and it must find a new implemen-
tation.

8. A TMS can have cyclic dependencies. An DMS cannot; no valid implementation
can simply assume portions of itself are correct.

9.6 Nonlinear Plan Repair and Reuse

Nonlinear planners are often used by robots to produce possible plans of actions
given some desired goal state [CM85]. The notion of nonlinear plan is often used

4While Proteus [Pet87] rules do have a truth status, that status is not used; i.e., it is never

denied.
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as a representation for sets of possibly unordered actions that achieve some overall
result [Sac77, Geo87]. In this section, we compare our work to the SIPE [Wil88],
IPEM [AI87, AIS88], and PRIAR [Kam8&9] nonlinear planners, each of which does

some form of plan repair and reuse.

We can compare our work to that of nonlinear planners in general by drawing
parallels between:

o design states and planner world states

transforms and operators

functional specifications and initial planner world states
e performance goals and goal world states

e histories and nonlinear plans (see Section 5.4.4)

Planner world states are often conceptually represented by set of predicates describing
primitive relations between world objects, along with derived relations. Such predi-
cate sets correspond to our notion of a design states containing cached consequences.

Operators change the set of predicates which form planner states, while trans-
forms map design states to design states. A fundamental difference in representation
exists in that nonlinear planners almost never realize complete representations of state
as we have for transformation systems. Instead partial states are dynamically com-
puted relative to some set of nodes in the nonlinear plan; determining if some relation
is true in such a partial state is called the modal truth criterion [Cha87]. While com-
puting such truth values is expensive, the absence of nonessential sequencing makes
it well worth the trouble. We used complete states for DMS to avoid the problem of
computing performance predicates over partial program schemes, because we did not
know how to characterize how program schemes could be partitioned; this problem is
related to that of defining appropriate notions of locale. Such notions of partial state
are needed to make constructing ladders in the context of a design history practical

(Section 8.3.3).

A planner is given an initial world state and must find a sequence of operators
to apply to change to a goal world state; a transformation system is given a functional
specification fy and must apply property-preserving transforms to locate a state in
which the remaining performance predicate GG,z is true. The parallel between per-
formance goals and goal world states is uneven, because performance goals are often
stated in terms of complex derived properties of states, whereas planning goals are
usually stated in the exact same terminology as used for initial world states.
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Similarities between transformational implementation and planning suggest that
similar problems in the planning domain have solutions of interest for transformational
maintenance. Several problems exist for such robot planners:

e Plans must be constructed

e Planning is expensive

e The robot’s knowledge of the world may be faulty
e An action may fail to execute perfectly

e The robot’s goals may suddenly change

Plan construction is essentially a search problem. We discussed control mecha-
nisms for nonlinear planning in Section 4.3.4.

Because of the expense of planning, it is interesting to find and reuse plans in
new environments. We can turn this into a maintenance problem by computing what
amounts to a functional delta 6; between the present world state and the world state
of the recycled plan; Kambhampati’s PRIAR system [Kam89] effectively does this.
Errors discovered in knowledge about the current state during execution of a plan
can similarly be treated as a sudden requirement to insert a functional delta into a
derivation history; SIPE [Wil88] does this with “Mother-Nature” actions.

While executing a plan, an applied operator may fail to act properly; the state
predicted by its action may not be achieved by its action. In this case, an unexpected
world state is suddenly encountered. This case directly matches the transformational
maintenance situation in which the functional specification (the expected state after
operator application) is changed by a é; into the unexpected world state, and the plan
must be repaired accordingly. Both the SIPE [Wil88] and the IPEM [AI87, ATIS8S]
systems handles such plan repair. In a transformation system, transformations do
not fail, but methods can; however, failed methods cause backtracking rather than
Ay integration because the functional specification does not change.

During execution of an existing nonlinear plan, the robot may decide that the
original goals which motivated the plan are no longer appropriate. Such a change of
goals requires that the existing plan be modified in some fashion to take into account
the new goals, and drop plan components related to now obsolete goals. The IPEM
planner [AI87, AIS88] does this. Such a change corresponds to a performance goal
change 64 in our framework.

Our notion of shared agenda item is a useful addition to the notion of phantom
goal used by typical nonlinear planners. Phantom goals are recorded when a plan
step s is to achieve a desired effect ¢, and ¢ is found serendipitously to be true in
the partial world present when ¢ is to be accomplished. This is certainly valuable
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when s must definitely follow other steps S = {s1,33,...5,} that made ¢ true, but
places an inappropriate asymmetry in the plan when s can be executed in parallel
with S. The asymmetry shows when an explanation of the plan is requested; the
explanation for a phantom goal node s is “Nodes S necessarily before s have already
accomplished this.”, whereas the explanation for a shared agenda item would be
9

The asymmetry of a
phantom goal node also shows when some step s; € S is suddenly no longer needed

“Doing S accomplishes this, and also serves parents(S) — s.’

to accomplish the purpose of S5 one must expend effort to determine of s; serves a
phantom, and if so, replace the phantom by s;. No plan repair system with which we
are familiar does this; rather, they delete s; and attempt to re-achieve ¢ at a later
time, wasting the knowledge that s; already has the desired effect, and the already
generated subplan under s; that actually achieves it. By using a shared agenda item,
we achieve this effect easily.

Nonlinear planners need not “reorder” most independent operators at all; this
is the entire point of the nonlinear plan representation. For DMS, this corresponds to
SWAP with unchanged locaters. However, for DMS, we have seen the value of SWAP
in which the locaters do change, and the corresponding value of DEFER. Nonlinear
plan repair mechanisms have nothing remotely similar.

9.6.1 SIPE and replanning

SIPE [Wil88] is one of the few domain-independent, nonlinear hierarchical plan-
ner that allows for replanning in the face of unexpected events.

Control for SIPE was described in Section 4.3.4. SIPE plan critics diagnose
and fix plan bugs produced during the planning process. The design selections made
by such critics can be captured in nonlinear histories but the design choice causing
them is not. The absence of such explicit records we think makes design repair harder
because certain alternatives are left implicit.

Planning, plan execution, and execution monitoring for surprises in SIPE are
interleaved to allow recovery from unexpected events; replanning only occurs when
the environment changes, corresponding to DMS recovering after application of a
functional delta é6; part way through the implementation process.
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The following replanning actions can occur [Wil88, page 153]:

Insert: inserts a new subplan after an existing subplan. This is not used directly
by plan repair, but rather acts as a “subroutine” for most of the following repair
actions.

Insert-Conditional: inserts a test for value of unknown state variable

Retry: converts a phantom goal node into an incomplete goal node

Redo: Adds a new goal to be achieved to the plan

Insert-parallel: Adds a parallel set of goals to the plan

Reinstantiate: Change binding of a variable to an object to reachieve a predicate
Pop-redo: Removing a subplan and replace by an incomplete goal node

Pop-remove: Removing a subplan whose effect is already achieved.

TCL plan repair and the delta integration procedures collectively provide very similar

actions:

Insert: Executing an agenda item, and in particular, inserting a transformation
into the derivation history

Insert-Conditional: unnecessary in a transformation system; there is never any
doubt about the accuracy of state information.

Retry: accomplished by pruning back to an ACHIEVE node.
Redo: Adjustment of ACHIEVE conditions in the face of Ag (Section 8.6)

Insert-parallel: Like Redo. Implicit in a single ACHIEVE, so it isn’t really
necessary.

Reinstantiate: Changing a locater to achieve the same effect
Pop-redo: Pruning a subplan back to an alternative (Section 8.2)

Pop-remove: Pruning a subplan back to an ACHIEVE; when tried, the agenda
execution mechanism will discover that the ACHIEVE condition is true.

The SIPE notion of deleting a “wedge”, the subplan below an agenda item, is equiv-
alent to TCL subplan removal. This kind of mechanism must be present in any kind

of hierarchical planner precisely because of the notion of hierarchical plan; deletion
of the parent of such a plan must naturally delete all of its components. However,

we see little value in limiting the mechanism to mere wedge removal; invariably after

removing a wedge, one must prune back to a choice point. There appears to be no
need for the Design Maintenance System notion of agenda-item marking, because

SIPE does not handle changes to methods or transform libraries.
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For STPE, replanning occurs when the current world state is suddenly changed;
SIPE is told precisely which facts changed by inserting a “Mother Nature” op-
erator (in effect, the explicit 65) into the plan network that expresses the sta-
tus of the revised facts. By computing the necessarily following nodes of the
“Mother Nature” node, those parts of the plan that use the changed facts
can be found and re-tested. The changed facts can cause any of the follow-
ing problems, which are cured by the corresponding actions [Wil88, page 153]:

PROBLEM REPLANNER RESPONSE
purpose not achieved Redo

previous phantom untrue Reinstantiate, then Retry
unknown variable Insert-Conditional

future phantom untrue Retry

precondition untrue Reinstantiate, then Pop-redo
parallel postcondition untrue Insert-parallel

Most of the problems detected by SIPE are accomplished by Design Maintenance
System via replacement transformation revalidation (Section 8.3.3).

Design Maintenance System obviously handles many more kinds of changes than

SIPE.

9.6.2 IPEM: Plan repair

The Integrated Planning and Execution Monitoring (IPEM) nonlinear planning
system [AI87, AIS88] takes a kind of production-system approach to both planning
and plan repair in the face of unexpected events. In particular, planning and plan
repair are indistinguishable, simplifying the overall architecture of the system. We
followed this philosophy for the TCL execution engine. An aspect of IPEM which
we do not consider is its ability to interleave both planning and execution, as such
ability is not really meaningful for transformational implementation.

IPEM uses a notion of range to tie effects produced by one action to precon-
ditions of following actions; this is a special case of the validations used by PRIAR
Section 5.4.6. Ranges have the effect of providing sequencing constraints between
nodes, as the action producing a range must necessarily be executed before an action
that consumes it.

The TPEM system elaborates plans by execution of “metaplanning” operators.
Each metaplanning operator has a precondition under which it fires and an procedure
which modifies the existing partial plan. Plan flaws are defects in the plan; incomplete
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agenda items, improper ordering among actions, etc. For each flaw, there are a set
of plan fizes methods for resolving the flaws. A set of flaw/fix pairs constitutes the
metaplanning operators. Such a framework is similar in spirit to the DMS notion of
delta-specific integration procedures.

The most interesting aspect of the fix/flaw framework is that plan repair is
completely incremental; flaws can be fixed in any order (dependencies will of course
necessitate backtracking). Fixing a flaw can, of course, introduce yet another flaw.
Since TIPEM is implemented in PROLOG, backtracking occurs automatically if an
applied fix eventually leads to a dead end, and alternative fixes are then tried.

We list each IPEM-defined flaw, and the corresponding fixes:

Unsupported Action Precondition:

— Attach Range to action known to be earlier
— Attach Range to parallel action, ensuring it is earlier

— Attach Range to newly-created action

Unresolved Parallel Conflict: Order conflicting actions

Execution Flaws:

— Incomplete Action: Expand Action

— Unexecuted Action: Fxecute Action

— Timed Out Action: Remove Action and Dependent Ranges
— Unextended Range: Attach Range to Plan Head

Replanning Flaws:

— Redundant Action: Remove Action

— Unsupported Range (false fact): Remove Range

An unsupported action precondition flaw is roughly equivalent to a TCL
ACHEIVE agenda item. The corresponding multiple fixes are essentially different
ways of satisfying the goal. The fixes that attach ranges to existing actions consti-
tutes making a phantom of the goal; creating a new action constitutes decomposing
into subgoals. IPEM apparantly has no way of constructing a shared action.

Expanding an incomplete action roughly corresponds to the TCIL agenda-
oriented execution model, with TCL placing priority on agenda items which are
“early” in the plan to maximize downstream damage early while the plan is still
small.
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The execution flaw “Timed Out Action” handles a problem which occurs in
robots: actions may not work or complete. Under such a circumstance, replanning
to achieve the originally desired effect is necessary. This is reminiscent of a “tempo-
rary” technology change, i.e., designation that a particular transformation in a DMS
derivation history is invalid without changing the transform library.

The replanning flaw of Redundant Action corresponds to handling Ag.G, i.e.,
removing additional performance goals, thereby removing the need for actions to
achieve them. Adding new goals causes unsupported action preconditions. The un-
supported range flaw detects changes in the current world state and its fix removes
actions which depend on newly deleted facts; this is similar to handling Ay.

9.6.3 PRIAR: Nonlinear Plan Reuse

The PRIAR nonlinear plan reuse system [Kam89] modified a supplied plan for
use in a new problem situation.

Reusable nonlinear plans are augmented by wvalidations and annotations, pro-
viding fine detail about which actions generate and which actions consume which
generated facts, as described in Section 5.4.6. These fine-grain dependencies are the
key to efficient modification of the plan. In particular, the validations provide for fact
dependencies in a way which is not dependent on the applied operator sequence, as

is XANA.

A mapping « specifies a partial map from the objects in the supplied plan to
the objects in the new problem situation. From the mapping, deltas similar to those
of our DMS could be generated and processed. Changes to sets of facts in the initial
world correspond to éy. Changes to sets of facts in the goal world correspond to d¢.
Since PRIAR handles both sets of changes at once, it acts as though it processes a
composite delta (¢¢,0). PRIAR uses methods similar to those for DMS for adjusting
the design plan.

Applying the map « to the entire recycled plan produces a plan for the new
problem, which must usually be repaired. Facts that are no longer true, new facts
in the new starting situation, extra goals and unnecessary goals are marked in the
recycled plan. Next, each validation dependent on a marked fact is checked. For each
failing validation, a repair task is proposed.

Each new goal causes a new ACHIEVE(goal) node to be added to the plan, to
be later solved by the planner under the implicit assumption that separate goals are
usually independently achievable (in contrast, DMS walks down the design history
tree with a 64 changing ACHIEVE nodes as it goes; this difference seems caused by
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the nonlinear planner representation of facts and therefore goals as separate entities,
in contrast to the DMS treatment of states and therefore performance predicates
as monoliths.) Deleted facts that formerly satisfied phantom goals cause the phan-
toms to be “de-phantomized”, also to be solved later by the planner. Deleted
facts that formerly satisfied action “filter” preconditions (i.e., analogous to enabling
a REQUIRE in a method) cause the subplan containing that action to be pruned in
a fashion virtually identical to that of TCL pruning. However, the action at the root
of the pruned plan is replaced by a goal to ACHIEVE all the E-conditions of the
subplan, recording all the necessary effects of the now missing subplan; this prevents
an immediate cascade of failed validations for portions of the plan depending on the
pruned section. New facts serendipitously satisfying preconditions cause subplans
to be pruned and replaced by phantoms. A special case leaves changes a validation
without changing the plan structure: if originally £ + ', and FE is replaced by £’
by «, then E’' F (' is checked, and if provable, only the validation is adjusted; this
is similar to a performance bound delta subsuming an existing performance bound
when DMS is installing a performance delta.

After the plan has been repaired, the partial plan is shipped to the planner for
completion; unlike DMS, the planner in repair mode (as opposed to fresh-problem
solving mode) attempts to instantiate pruned subplans first before newly added goals
in an attempt to satisfy validations already present in the partial plan. This is proba-
bly one of the best ideas in PRIAR, as it tends to prevent the spread of damage to the
plan. Because a pruned subplan is converted into a goal to achieve the pruned sub-
plan FE-conditions as subgoals, it appears that a repaired plan may be unexplainable
in terms of the problem solving primitives available to the planner; problem decom-
position is not likely to produce such idiosyncratic sets of of subgoals. It is not clear
whether the planner keeps the annotations up to date, or why the planner doesn’t
actually use them during planning; if the annotations existed during planning, the
planner repair mode would simply be a clever backtracking method.

The PRIAR work shows that plan reuse cuts the search space exponentially,
and shows an empirical validation of plan reuse saving 95%+ over fresh planning in
selected blocks world examples. It is suggested that PRIAR ideas could be used in
design replay; we agree that they should be investigated.

The difficult problem of handling an unpreservable transformation supporting a
larger plan ( Section 8.3.3) is not handled directly by PRIAR; it is somehow hidden
in the planning mechanism backtracking logic. It becomes an explicit problem in
our DMS framework because of our retention of a delta during the ladder building
process.

Our shared agenda item deletion (Section 8.2) process is reminiscent of
Kambhampati’s task node deletion when the task no longer has any “external” effects.
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9.7 Summary

We have compared our notion of a DMS with a number of related works. The
DMS concepts and methods subsume most of the work not related to planning.
Nonlinear planners have the advantage of nonlinear primitive operations over our
DMS, making the notion of SWAP for trivial exchanges trivial to compute. We
summarize this relation in Figure 9.1.

We see that DMS is the only system that supports:

e Performance specifications

e Explicit Deltas of a variety of types

Our analysis in this chapter demonstrates that our design history representation and
delta integration procedures are more broadly based in terms of the range of deltas
handled, and more robust than those of the other systems examined, by virtue of
being theoretically motivated.

In brief, for each of the following schemes, DMS has the listed advantage:

e Dynamic Metaprogram Replay: No need to rediscover actual history elements

Correspondence Discovery (Goldberg): Functional delta unerringly guides
e Node dependencies (XANA): Not confused by movement of specification parts

e Derivation  Histories  only: Revalidates  reused  transformations,
finds new methods to replace failed transformations

Syntactic Dependencies: DMS can reorder if not semantically dependent
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Chapter 10
Conclusions and Future work

Chapter summary. We summarize the thesis results. We consider some
insights derived from the work. Future research directions are discussed. The
impact of this work is considered.

10.1 The main result

Our fundamental interest is in making the notion of Incremental Evolution
of software possible: integrating a stream of deltas generated by comparing imple-
mentations to expectations, to obtain successively better implementations. Having
determined that design information is necessary in order to accomplish practical mod-
ifications to existing implementations, we chose a formal model of software implemen-
tation, transformational implementation, in order to force such design information to
be formally representable and therefore capturable. We determined that much of the
necessary design information could be captured by recording design history of the
decisions made by the transformation system, and that maintaining this design was
the key to revising implementations. With this background, we limited our purpose
to demonstrating that:

We can efficiently maintain software generated transformationally by
integrating formal deltas into design histories.

Our approach was to produce theory and procedures necessary for a Design
Maintenance System, which would then realize an efficient kind of support for
Incremental Evolution.

293
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To achieve the goal of constructing such theories and mechanisms, we have:

e Provided an architecture for a Design Maintenance System based on a trans-
formational implementation model;

e Defined a transformation control language, TCL, as a means for generating
implementations and producing design histories as byproducts;

e Formalized a complete set of maintenance deltas based on our model of a trans-
formation system:;

e Provided procedures for integrating various types of deltas into an existing
design history by taking advantage of commutativity in the design space;

e Provided an empirical validation of the existence of significant commutativity
in a model of a design space;

e Demonstrated the utility of the derivation history revision procedures by means
of examples;

e Validated those procedures for revising the derivation history component of a
design history by an experimental implementation

10.2 Analysis and Insights

In this section, we consider some global aspects of a Design Maintenance System.
We discuss controlling change management costs, types of of modularity and their
utility, and a new perspective on what constitutes an architecture.

10.2.1 Completeness of a Design Maintenance System

We have tried to ensure that our model of a Design Maintenance System is
complete by modeling the entire software construction process formally, and provid-
ing delta integration procedures for changes to each type of input. If a transforma-
tion system can develop software fully automatically from its description, then our
approach is complete. We see two possible failings. The first is that our model of a
transformation system is wrong or missing some input. This kind of problem should
be relatively easy to repair in our framework; simply postulate a different/new input
and produce integration procedures for it. The second failing, which is more likely, is
that the transformation system does not have enough design knowledge of its own to
carry off an implementation by itself, and so certain transformations are chosen by a
software engineer for which the motivations are not recorded. We feel this is really a
problem in knowledge acquisition and not a problem with our framework.
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10.2.2 Change Integration Costs

The purpose of Incremental Evolution is to make implementation and mainte-
nance more effective. We have provided procedures for integrating deltas into design
histories. Can such procedures be accomplished efficiently? We have shown that
certain operations on a derivation history are O(n?), and that n = 40000 is not
unreasonable. It is clear that if the cost of such procedures exceeds the cost of re-
implementing a specification from scratch, it would be better to re-implement. In the
worst case, we can bound the delta integration costs by running an implementation
process in paralell, but we expect to much better on average. Our integration pro-
cedures depend on commutativity in the design space. We determined empirically
that for small spaces with properties like that of design spaces, there was a consid-
erable amount of commutativity, even for n = 28; analytical analyses from [Bax88]
suggested the commutativity grew exponentially with the size of the space, so there
is considerable hope. This hope is complemented by the fact that real maintainers
perform the maintenance task successfully every day, without changing much of the
maintained artifact.

10.2.3 Artificial Modularity vs. Essential Modularity

One of the fundamental methods for conquering complexity is problem parti-
tioning. Such partitioning has become an important part of software engineering in
the form of the slogan “information hiding” [Par72]. An organization divides a soft-
ware system into “modules”, defines fixed interfaces for the modules, and can then
parcel out work to smaller organizations. We call this scheme artificial modularity,
as the structure of the modules is imposed by the organization on the designer. Many
software methodologies attempt to make such boundaries fit natural boundaries of the
problem itself (OOP, JSD) in an attempt to minimize future maintenance troubles.

We contrast artificial modularity with the idea of essential modularity: the real
separability of concerns in a software system. KEssential modularity is partitioning
that respects only the true semantic dependencies derived from the nature of the
problem and its solution, rather than simply being imposed. Artificial modularity is
the often imperfect, very conservative abstraction of essential module boundaries.

The purported value of artificial modularity in freezing module boundaries is
to limit communication between using and implementing teams to agreement on the
module interface. The difficulty with this idea is that such artificial partitions often
do not match the problem. When difficulties unresolvable by a module team arise, no
solution is possible precisely because the module interface is frozen; this is a failure
of artificial modularity to separate the concerns. Changing the module interface is
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an admission that artificial modularity has failed to achieve its goal of minimizing
communication. The real difficulty is usually that a semantic dependency crosses the
module boundary. It is often the case that the problem is easily resolved when both
teams are willing to make changes; this tells us that the essential module crosses the
artificial module boundary.

Consider a module A that manipulates a data structure logically via access pro-
cedures in module D. Optimization requires spreading information across module
boundaries; for A to be “high” performance, we can expect that some representa-
tional properties of the data structure have been encoded into A. Changes to the
data structure itself are likely to affect module D, and therefore to affect module A.
Artificial modularity would insist that A and D are implemented separately, prevent-
ing the optimization we desired. FEssential modularity would keep track of how A
used the procedures of D, allowing aspects, and therefore changes, to D to be traced
to their effect on A.

Others have noticed similar problems with artificial modularity. In an analysis
of typical modifications made to real software systems, [Bor89] discusses problems
caused by non-essential change propagated across artificial module boundaries:

... Not all effects of modularity are beneficial. (Our work) suggests that most of
the recompilations performed after a change to an interface are redundant and
that this redundancy is a direct consequence of how we modularize software
systems. ...

.. we would expect between 6 and 9 out of every 10 compilations to be unnec-
essary (as a consequence of this fact) ...

. (Evidence) validates the approach ... to use an underlying flat (i.e. non-
modular) representation of program objects, and to the extent that recompila-
tion costs reflect general program complexity, leads us to question some basic
assumptions about modularization.

The ability to detect real impact, rather than artificial impact, can help alleviate
this.

Essential modularity will allow teams to divide problems along natural bound-
aries. Interactions between teams are necessarily required when problem affecting
other teams work arises. In the conventional SE environment, where communication
is manual, slow, unreliable, and the problem is not well understood, essential modu-
larity is perhaps a liability. In an environment where consequences of effects can be
traced quickly, we argue that essential modularity is not a disadvantage; besides, it
is not possible to get rid of such interactions anyway (as the existence of changes to
module interfaces suggest).
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To make using essential modularity possible, we must have tools that can trace
the effects of decisions across module boundaries. The design history supplies key
information needed to trace the effects of decisions. We see a Design Maintenance
System as type of tool necessary for managing such essential modularity.

We do recognize the utility of artificial modularity for the purposes of control-
ling reasoning costs, both computational and conceptual. We simply want to point
out that artificial modularity for controlling communication, as required by software
engineering methods of past and present, may be of hindrance in methodologies of
the future in which communication is not such a large problem.

10.2.4 On what constitutes an “Architecture”

Transformational maintenance gives us a new perspective on the meaning of an
architecture. [GovTl, p. 113] defines architecture as

a method or style of building characterized by certain peculiar style of structure
or ornamentation.

In engineering, the term usually refers to fundamental organizational properties of
an artifact. For software systems, an architecture is usually some high level choice
of problem solution coupled with a partition of the solution into major components
which cooperate to achieve the solution. A widely available software engineering
text [Fai85, p. 40] doesn’t really define architecture; it simply states “Architectural
design involves identifying the software components, decoupling and decomposing
them into processing modules and conceptual data structures, and specifying the
interconnections among components.” It seems clear that the architecture of such
artifacts is the consequence of some decision-making process. What is it that makes
the notion of architecture useful?

Our answer deemphasizes the actual structures, and instead emphasizes the cost
of acquiring, understanding, and/or undoing the decisions that lead to the particular
artifact at hand. The architecture comes about by careful consideration of the prob-
lem solution, and is usually tampered with at the peril of the tamperers. From the
transformational perspective, we suggest that architecture is precisely those structures
induced by the design selections which support a large portion of a design history!.
Such architecture is recognizable because it repeatedly appears in similar artifacts,

Remember that certain costs may be caused by factors external to the implementation: software
engineer understanding and user education. User re-education costs explain why apparently trivial
design decisions tend to get preserved.
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and attempts to change it are usually expensive, typically in learning how to live with
the new structure.

The repeated appearance of a structure is a consequence of its reuse, either
because it is a fundamental technique for solving a problem in the domain, or because
discovery of the technique was difficult, the problem is common, and consequently
the solution was deemed valuable enough to save and reuse. In the case of a design
history, some portion of the history will survive repeated installation of changes. We
define the long-term surviving portion to be the architecture of the artifact. This
makes architecture a consequence rather than a cause.

10.2.5 On Commutativity in the Design Space

If one had to choose a single lesson to be gained from this thesis, it would be
Commutativity in the design space aids design activities.

The commutative nature of the design space provides us with considerable op-
portunity for design repair. It was this insight that lead to this entire approach to
transformational maintenance by rearranging a derivation history. Dependency nets
are based on a weaker form of this idea; commutativity induced by the large diameter
of the design state versus the relatively small scope of effect of individual transfor-
mations. Dependency-directed backtracking also necessarily involves commutativity.

A related lesson appears in Lexical Searching [Bax88]: the notion that that a
problem space can be nearly decomposable; while we cannot expect to have problems
neatly decompose into entirely separate problems, we can hope that subproblems are
not so hopelessly entangled in their brethren that subproblem solutions are useless.
Thus we see commutativity as actually being an aid to the problem of design. In
particular, commutativity is a major source of essential modularity.

We find it rather remarkable that there is often independence between design
decisions, and are pleased that it exists, allowing us to revise our designs without
necessarily throwing all of our other decisions away. Otherwise design might truly be
an impossible task.

10.3 Impact

We consider the utility of this work in a broader context than simple transfor-
mational maintenance.
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10.3.1 Incremental Engineering

We set out initially to realize the dream of truly incremental engineering: the
ability to dynamically change our mind about desirable properties of an artifact and
acquire one quickly. Our Design Maintenance System seems to provide a start in
this direction. What effect would this have on conventional software engineering
practices?

We see the following effects:

e Continuous feedback model of design and implementation

e True melding of rapid prototyping with design and implementation
e Different costing schemes will be required

e Possibility of better cost predictions

e Better documentation for would-be maintainers

e Focus of debugging on requirements rather than implementation

o Lessening of costs of errors or changes in requirements

From the point of view of the customer, software lifecycles based on the wa-
terfall model usually require an intense interaction with the developers during the
requirements analysis process, a long quiet period during implementation, and then
a major surprise when the implementation finally appears, and consequences of early
requirements decisions are finally seen. An Incremental Evolution model suggests
that construction consists of continuous comparision of a partly completed artifact
with customer desires. The customer is involved with the process continuously. This
is similar to an extreme version of Boehm’s Spiral model; rapid prototyping and
implementation are no longer distinguishable.

The waterfall lifecycle model in its purist form is a one way street. Management
likes it because it appears to provide definite milestones in a software construction
process, and such milestones aid planning. The difficulty is that the pure model
does not reflect reality; there is continuous feedback between all the various stages,
and none is every really quite complete until the project is declared done. The very
milestones on which management is basing schedules simply don’t exist; it is not
surprising that many projects arrive at a “Test” stage and stay there long after the
original estimated completion date.

Prediction of costs must be made on a basis other than major milestones. With
an Incremental Evolution model, construction consists of integrating large numbers
of small deltas. It is possible that these deltas have useful statistical properties; one
property might be the average number of deltas for a typical problem domain imple-
mentation. Such statistical properties would provide management with alternative
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prediction schemes. The possibility of using dependency nets to gauge the difficulty
of proposed changes would also help cost estimation.

Understanding what a system does and how the effect is achieved is a prereq-
uisite to changing it. A Design Maintenance System provides, via the design history,
useful implementation information for the would-be maintainer. Unlike conventional
maintenance, this information is completely current and accurate. Tools to navi-
gate the design history can allow more focused browsing than conventional designs
in which no justification is recorded. These effects should lower the cost of under-
standing artifacts, decreasing costs of generating change proposals, as well actually
enhancing change management.

Use of a Design Maintenance System base on transformation systems would
change the emphasis of debugging from implementation repair to requirements repair.
Use of formal specifications and a base of tested methods and transformations ensures
that the implementation generated truly meets the specification; the problem then
becomes one of acquiring the right specification rather than finding errors in the
implementation process.

Since a Design Maintenance System is intended to automate much of the process
of installing changes according to specification changes, the cost of installing such
changes should be significantly less than corresponding costs in conventional software
engineering processes.

Overall, Incremental Evolution implemented via a Design Maintenance System
should have positive beneficial effects on software lifecycle activities and costs.

10.3.2 What do we do about “Dusty decks”?

If a transformation system is required to do maintenance, what can one do
about existing programs that are not derived transformationally?

The rather obvious answer is to construct a design history for the existing
program along with its specification, and then apply the methods outlined in this
thesis. This can be a painful exercise when we realize just how much information is
missing.
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We need a formal specification and a complete design history. Simply acquiring
a formal specification is likely to be hard for many reasons:

e We may not have a clear idea of the problem domain in which the program
operates. This requires that we do a domain analysis [Nei80, Nei84a, Ara88]
before we even start, just to identify the proper vocabulary. Even if we have a
library of existing domain analyses, we will need to validate the choice of any
particular domain as the problem representation basis.

e There is no accurate, written, let alone formal, specification of any of the per-
formance aspects of the problem to be solved. Absence of even informal written
specifications is a long-standing tradition with most code, let alone informal
specifications which accurately reflect the intent.

e Assuming it is even expressible, a formal specification is likely to have a
large number of ugly warts due to useless, buggy, arbitrary, idiosyncratic, or
environment-specific code that is present in the existing code. Such warts will
be difficult to understand or validate. We strongly believe that commitment of
intentional abstraction error [ABFP86] will be necessary to minimize the diffi-
culty caused by such warts; this is sort of the converse of revising the specifica-
tion due to the implementation [Swa82]; instead, we revise the implementation
as dictated to simplify construction of the specification.

Constructing a legitimate design history has its own pitfalls:

e The set of transformation rules and methods are similarly likely to be unclear,
necessitating a domain engineering step [Ara88] or at least domain engineering
validation.

o A valid design history must be generated that converts the proposed specifi-
cation to the implementation. If human agents propose the specification, it is
highly likely to be wrong, and no correct implementation of a wrong specifica-
tion can lead to the existing program. Specification repair will be necessary, but
knowing when to repair the specification and precisely how to do so are likely

to be difficult.

The idea of reconstructing an idealized explanation of programs is propounded
by [PC86], who suggest faking a rational design process during program construc-
tion. Such a characterization is at best informal, and one needs considerably more
detail, but an informal design characterization is probably a necessary intermediate
step. [ROL90] gives some methods for identifying informally various design decisions
present in existing code.

Systems like GIBIS [CB89, WML "89] use hypertext to annotate documents
such as source code with decision points, possible choices, and arguments pro- and
con- for those choices, and might be useful tools during the design recovery process.
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Design recovery systems ([Big89a, Big89b, BCC89, CC90, CS89, HN90, Ning9,
Our89, PGLS88, RD88, Wil87, RW90] are first steps towards automating the recovery
process in that they attempt to recover some of the design of existing code by matching
code fragments to various program plans that accomplish known computational goals;
the result is parameterized plans for the code, but not true performance specifications.
More ambitious systems actually attempt to recover a formal specification from code
instances into semi-formal (JSD) notations [SJ88] and formal (denotational semantics)

specification styles [WCM89].

A characterization of transformational maintenance from a partial recovery
point of view is given in [ABFP86], and was the initial impetus for this work.

We conclude that there is possibility of use of our paradigm on conventional
software, but many obstacles are present. Considering the amount of presently ex-
isting software, the effort to solve these problems might be justified. It is certainly
much easier to justify applying these techniques to new software systems, where one
can start transformationally from scratch.

10.3.3 Reuse of Components by Design Modification

Software component reuse is often touted as a possible source of major efficiency
gains in the software construction process. The popular approach to implementing
a component reuse scheme is to provide a library of components, let a potential
reuser locate candidate components using some browsing mechanism, and then have
the reuser modify the best candidate to fit his application somehow [Dia85]. Few
concrete proposals have been made for how this modification process is to take place.

A Design Maintenance System could be of great value for this purpose. Having
located a component that has a formal specification and design history, a delta be-
tween the desired specification and that of the component could be formed and applied
to produce a component with the desired properties. Candidate components could
be ranked by the size of the delta, or by an initial estimate of the impact of the delta
by carrying through with part of the marking and pruning processes. Kambhampati
[Kam89] makes a related observation for reuse of plans. James Neighbors? has re-
marked on the possibility of building large, general components, such as databases
and graphics subsystems, and reusing them by stripping away unnecessary generality;
a Design Maintenance System would be effective for this purpose. Since removal of
generality is usually easier than addition of missing capability, this might be a very
effective way to store components.

2Personal communication.
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Such a reuse scheme could be a valuable addition to a synthesis system, which
recursively decomposes a specification into a code fragment with slots containing yet
more detailed specifications; each specification would be checked against the reusable
component library for an easily modified solution before trying further decomposi-
tions.

10.3.4 Relevance to Digital Hardware Design

We are rather dismayed by the apparent separation of software and hardware
design systems. It seems rather obvious to us that the distinction between the de-
sign of digital hardware and and the design of software is merely that of low-level
geometric constraints®. The problems of specification, representation and application
of implementation choices seem virtually identical. The fact that hardware systems
have considerable fine-grain implementation-level parallelism, and most software sys-
tems design systems currently handle that poorly, merely reflects on the state of
software design and implementation technology; eventually, this problem will need
to be solved also for software. There is little in this thesis which is specific just to
software. Consequently we believe that the ideas presented in this thesis will serve
equally well in the digital design domain.

Remarks about maintaining dusty decks apply equally well to “dusty circuits”.
Million-transistor VLSI designs (such as the Intel 486 and Motorola 68040 CPUs)
have enough longevity, and certainly enough financial effect if modified incorrectly to
make a Design Maintenance System-like tool attractive.

10.4 Future Work

This thesis has presented some solutions to the problems of implementing a
Design Maintenance System. Quite a number of future directions for research sug-
gested themselves during the course of our work.

10.4.1 Implementation and Empirical Validation

By far the most obvious need is to implement the ideas and validate them on
a transformation system used for practical work. Existing transformation systems

3Physical placement of components, wiring layout, sizes of drivers dependent on line length and
number of loads, etc.
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by and large do not have performance specifications at all, and do not conveniently
produce design histories, so one must either build a fresh transformation system or
find some way to augment existing systems. Because of the absence of suitable bases
for our work, all of our demonstrations have been performed on extremely rough
engineering prototypes with no concessions for scale of programs or library sizes,
longevity of libraries (i.e., database storage), or operator amenities of any kind. It is
difficult to judge even the ability to use such a system, let alone its real utility, in such
an environment. A valuable byproduct of testing on real examples is a measurement
of the payoff of design maintenance as the problem sizes scale up.

10.4.2 Specification

Considering that we have so many data types (programs, performance measures,
transforms, locators, maintenance deltas) and operations (transformationally imple-
ment, delta-type-specific revision procedures, etc.) it would probably be worthwhile
to construct an algebraic specification of a transformation system with maintenance
deltas to provide a secure formal basis for these ideas. Such a specification can serve
as a basis for a new implementation of a Design Maintenance System. This exercise is
practical, as demonstrated by the algebraic specification of a transformation system

done by the CIP-S project [BEH87].

10.4.3 Self Application

Having a specification, a larger scale validation could be attempted by applying
a Design Maintenance System to its own construction. This would have the added
benefit of obtaining synergy during the tool construction process*. The hootstrap

construction of CIP-S from CIP-L shows the value of this approach [BEH*87].

10.4.4 Application to Dusty Decks

The amount of existing software that needs maintaining is simply too enormous
to ignore. Given the partial successes of reverse engineering transformationally, aug-
menting a Design Maintenance System with tools to aid in such a process could be
a useful way to extend the utility of a Design Maintenance System while simultane-
ously testing its limits. Existing plan recognition tools are needed, as well new tools

4We refer to leveraged self-application of a tool as an avalanche technology, on the grounds that
little effects can by self-magnified by the tool.
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to recognize the performance goals acheived by plans. We expect that the design
recovery process will be significantly aided by the ability to store and revise design
histories.

10.4.5 Improvements to Transformational Model

We find our transformational model weak in several respects. First, we have
no notion of construction-process oriented metrics or goals, and yet these are part of
all practical software construction methods. Addition of process goals also leads to
process goal deltas and integration methods.

Considering the value of the notion of locale as a program part to TCL for
navigation, we would like a better definition, perhaps derived from a topological
description of the program representation. Such a definition should allow us to reason
directly about whether locales overlap, and therefore determine common cases of
noninterference of transformations. Work is also needed on determining useful types
of locale-combining operations.

There is the unsatisfying problem of fitting synthesis systems into our model.
The CYPRESS synthesis system [Smi85] recursively decomposes a pure performance
specification into a functional specification and a set of more detailed performance
specifications. While this decomposition step could be treated as a transformation on
a state containing a specification, it does not match our model because there appears
to be no performance specification for the transformation system to maintain as an
invariant.

10.4.6 Performance algebras

We believe that explicitly defining what we would call performance algebras as
systems of computations for performance measures, using algebraic specification tech-
niques, will eventually be needed to allow deep reasoning about the effect of changes
on measures, and therefore on goal achievement. The subsumption relation would be
a natural part of the algebra, as would any definable performance predicate. Such
performance algebras would probably fit very nicely into transformation systems de-
signed around algebraic frameworks such as that of CIP [BEH*87] or PROSPECTRA
[KBS8S].
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10.4.7 Dependency networks for transformations

One of the severest problems with our current approach is the assumption of a
monolithic state, and the requirement by the ladder building routines of Section 8.3.3
to keep all the intermediate states. Some initial investigation on our part suggests that
one could use dependency networks for the derivation history rather than a simple
linear chain; XANA [MF89b] in effect does this. One would no longer depend on the
idea of a monolithic state; rather, each transformation produces a partial state, like
those used in nonlinear planning systems. Partial states could be represented by sets
of predicates describing relations between state components. The problem of non-local
constraints (results of multiple transformations) interacting to violate preconditions
of dependent transformations must be solved [Cha87], [Kam89, page 150]; this is the
primary reason we chose not to pursue this approach. As we pointed out earlier,
Kambhampati’s work on plan reuse [Kam89] looks like a very good starting point.

Such a nonlinear transformation dependency network would make many trivial
SWAPs actually unnecessary; the large size of a practical derivation history indicates
that this should be a very effective optimization. Naturally, the notion of DEFER
must be retained because dependency nets are conservative; “a depends on b” may
only be syntactic and not semantic. The formal characterization of DEFER must
change because of the change in state representation.

We do not believe that a Design Maintenance System will make new software
production virtually instantaneous; rearranging a design history can be expensive in
its own right, and design history repair by transformational implementation can also
be expensive, perhaps measured in days or months depending on the scale of the
change. Dependency networks might make change-cost impact analyses possible, by
assuming that the number of transformations dependent, according to the dependency
network, on a particular transformation is an estimate of the required work. Such
a count can obviously be made without actually changing the network. “What-if”
estimates could then be made from proposed deltas.

An additional benefit of dependency networks might be the ability to maintain
multiple implementation versions, each sharing much their individual design histo-
ries. Different versions would be represented by different consistent frontiers of the
dependency network.

10.4.8 Finding commutable transformations

Our methods for functional delta integration depend fundamentally on finding
a composably equivalent pair of transformations to replace an existing pair, often
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by revising just the locaters. Although this thesis theoretically characterizes the
generation of such revised locaters as a British Museum Algorithm, one cannot afford
to do this in practice. Efficient methods for determining such pairs depends on a
deeper understanding of the relation between rewriting, the structure of the objects
being rewritten, and the notion of locaters; our prototype system uses knowledge
about tree-rewrites with pattern matching by unification, over trees, using paths as
locaters, to achieve this kind of efficiency. We intuitively trust, but do not know
how to formalize, the DEFFERral of an optimization through a refinement, as shown
in Figures 7.9 and 7.19. A categorical exploration of rewriting motivated initially
by this need has been started [Sri91]. With such understanding, one might be able
to generate the portion of procedures such as DEFFER that handle geometrically
overlapping but non-interfering transformations, automatically from descriptions of
the topology of the states.

10.4.9 Increasing the Grain Size of commutable elements

While our model of transformations does not include them explicitly, TCL meth-
ods are technically transforms; they are definitely partial maps from states to states.
We did not consider the idea of applying DEFER or PRESERVE at the level of
method application during functional delta integration. Successful deferral at the
method level can avoid investing much larger amounts of energy attempting to de-
fer transformations at lower levels. Considering that methods have postconditions
describing the desired effect of the method, we are overlooking a rich source of infor-
mation that can tell us about possible impacts.

10.4.10 Representation of Program Schemes
and Functional Deltas

For our experimental system, we chose a tree representation for programs and
conditional tree rewrites as the standard form of transform. Choosing simple tree
rewrites implicitly defined our functional deltas to also be tree rewrites. Two inde-
pendent changes separated by great distance in a tree program unfortunately require a
very big tree delta. We briefly considered representing deltas as bags of tree rewrites.
But the additional fact that tree representations do not easily lend themselves to
commonly-occurring transformations that use information from “far away”, such as
variable declarations, suggested instead choosing a graph representation for programs
and using graph transforms as deltas. Specific techniques to handle commuting graph
transformations would be needed. Research outlined in the Section 10.4.8 would be

helpful here.
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10.4.11 Delta Acquisition

We have assumed that deltas simply appear. It would be convenient if such
deltas could be produced by a regular process given a partial implementation and
feedback from a customer. Techniques such as Shapiro’s critical experiments for au-
tomatic debugging [Sha83] could perhaps be used to focus attention on erroneous parts
of the specification or incorrect transformations. We have already remarked on the
possibility of producing functional deltas given an almost applicable transformation in
Section 7.5. The KATE system is intended to acquire and check specifications[Fic87];
specification errors could be cast as deltas.

10.4.12 Asynchronous Evolution

Regardless of the power of our tools for constructing software, there will always
be ambitious projects requiring more than a single software engineer. Our character-
ization of a Design Maintenance System assumes a fully synchronous cycle of

repeat CollectDelta; ProcessDelta end

With a large number of engineers, this is probably not practical. Methods for co-
ordinating the entry, integration of deltas, and plan repair (TCL execution) all in
parallel are likely to be needed. We think there is promise in the database notions
of serializable transactions, and in particular in nested transactions [Mos85al, be-
cause of the similarity between the notion of atomic transaction and the all-or-useless
transaction-like nature of TCL methods.
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10.5 Summary

This thesis has explored the problem of maintenance from a transformational
perspective. Results of this exploration include:

e Improved transformation system models and mechanisms:

— A formal model of a transformation system, including performance speci-
fications. Few such models or systems exist.

— TCL, a metaprogramming language, in which performance goals are
stated explicitly and drive the transformational derivation. Other existing
metaprogramming languages do not encode performance goals, effectively
having procedural semantics for performance specifications.

— Design history capture for potential explanation of implementation

— Dependency-directed backtracking (BANISH)

— Partial design repair by agenda item execution

e An architecture for a Design Maintenance System based on:

— A formal model of transformational maintenance. This is a significant
improvement over the ad hoc characterization of maintenance presented
by standard software engineering texts.

— A new classification of maintenance types based on transformation system
inputs; this classification tells one precisely what methods are needed to
install change. Conventional classification of maintenance types provide
no clues as to how to handle the change installation.

— Theoretical procedures, based on commutativity in the design space, for
preserving a significant portion of the design history in the face of a change,
and the understanding that what part can be preserved can be determined
by explicit use of the change.

— An empirical demonstration that search spaces, and therefore design
spaces, are likely to be highly commutative.

o Insights:

— That initial implementation and maintenance, which appear to be com-
pletely separate lifecycle phases in conventional SE models, are in fact not
truly distinguishable.

— The notions of essential versus artificial modularity.
— Architecture as decisions which are expensive to remove

This investigation leads us to the conclusion that a Design Maintenance System
based on these ideas might well be practical, and has the potential for revolutionizing
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the way in which software is built and maintained. Coupled with the notion of
Design Recovery this work might ultimately lead to practical systems for maintaining
software not constructed transformationally.



Appendix A
Notation

We summarize here the notation used throughout the thesis.

Generally, calligraphic letters represent universes, capital letters represent spe-
cific sets, and lower case letters represent set elements.

D means logical implication.

C means “subset of”.

F = set of all possible program schemes.

fi € F is a particular program scheme.

7z refers to scheme variable z.

fe 1s a program satisfying predicate (.

€ € F is the “empty” program, skip.

Q are possible facts inferred about programs.
q is a fact.

qi,; are consequences, or deductions, drawn about a particular f;
Q = {q} is a set of facts.

S = set of states in the design space.

s; € S is a state, consisting of a pair (f, @), where f is a program and @ is a
set of cached inferences about f.

F* facts(f) is the theory of f, the transitive closure of the deducibility relation
F.

V; is the set of performance values computable by performance value function
Pi-

P = set of performance measuring functions p; : S — V;.

G = set of performance goals.

G, : S — boolean is a performance goal.

g € G:S — boolean is a performance predicate.
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APPENDIX A. NOTATION
(Notation, continued)

7 is an arbitrary set of possible identifiers

B = set of bindings, or indicators of specific places in the state where it is
legitimate to apply a transform.

b; € B are particular bindings.

L = set of locaters or locales: binding constraints.

( € L is a particular locater

X is the set 7 x L of transformations.

r € X is a transformation.

v 1s the name of a method variable capable of holding a locale value.
[ is a particular locale.

T = set of transforms possible, with members denoted ;.

t; € T is transform ¢, a function ¢; : S x B — § (partial functions). For simple
transformational models in which the state consists solely of a program (as in
most extant transformation systems) then ¢; : F x B — F.

match(t, s, () is the subset of arrows leaving s selected by (.

apply(t, s, ) follows one arrow from S to some 5.

t is a transformation, i.e., a transform 7 with locater (, a function t{: S — S
defined(tf(s)) is a predicate which is true if #4(s) is well defined, and false oth-

erwise.
fi = f; means that program f; is transformed to program f;

C; € T is the set of G;-preserving, or p;-preserving transforms. Individual
members are denoted ¢; € C;.

N; = T — C; is the set of non-property-preserving transforms with respect to
goal G;. Individual members are denoted n; € N;.

M is the set of all possible hueristic methods used to guide the design process.

M C M is aspecific set of methods. A specific set of methods used to implement
a particular specification is called a metaprogram.

m; = (1,a,G) € M is a specific method consisting of a identifier 7, action a and
a postcondition G.
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(Notation, continued)

[t]- -] represents a sequence of transformations, i.e., a derivation history.

‘H is the set of possible derivation histories.

H is a derivation history. This is a triple (k, HT : 1.k — T,H* : 1.k — L),
. : HA(i)
representing a sequence of transformations [zq, xg, - - - %], where x; = tHT(i)'

length(H) = k is the length of a derivation history H = (k, HT, H*)
H[z] is the transformation tgi((?)

HJi..j] is a subsequence [tgi((?), ... ,tgi((]]))]

rest(H,1) = H[i..length(H)] is the tail of H.

H, C Hy =3, | Hy = Hali..j]

Hy + Hy = [Hy[1], ..., Hi[length(Hq)], Ha[1], ..., Ha[length( H3)]]

H(H)(fo) = fiengn(rry is the program achieved by computing f; = tgf—((?)(fz_l)
fori=1---length(H).

D is a design history, = H plus unfolded goal plan.

R C H is the set of refinement histories, consisting of those transformations
which add detail, i.e., enlarge the theory of the specification.

ReR
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APPENDIX A. NOTATION
(Notation, continued)

Ayy,e represents the set of values forming 64, associated with a function

REVISE,,..

REVISE,,. : object, . x Ay, — object,
instance of object,, . according to a delta of that type.

6 € Ay is a particular change. We write 6(d) to mean REVISE,,,.s)(d, ).

Ag is the type (set) of changes to a performance specification

is a function which revises an

A, is the type (set) of changes to performance bounds

of changes to performance goal library

set) of changes to property-preserving sets of transformations

)

Ay is the type (set) of changes to a functional specification
)

A¢ is the type )

Ag is the type (set
(
set

Ap is the type of changes to the performance measure library

set

(set)
(set)

A is the type (set) of changes to the subsumption relations between perfor-

Ay is the type of changes to the sets of performance values

mance values

A is the type (set) of changes to the method library

A is the set of possible actions of a method.

a € Ais a specific action.

(11 1 €1, 13: €2, ..., 1} : €x) defines a tuple with slots named 1,15, . ..

e.1 refers to the value of the tuple slot named 7 of the tuple e.
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Procedure for Integrating A f
into a Derivation History

The code in this section gives an abstract procedural description of view of Ay
integration into derivation histories. It models the generation of deltas by a customer,
and the integration of those deltas into (revised) derivation histories, preserving as
many of the transformations as possible. It is not intended to be efficient; its purpose
is to convey the intent. Performance goals are not handled (see section 7).

The program design language is intended to be a relatively conventional block-
structured procedural language, that can manipulate records and sequences as en-
tities. Most of the constructs should be self-explanatory, but, here are a few notes
about the more esoteric aspects:

e Keywords are boldface: Declare If Then Else Fi
Procedure Function Returns Return Guard

e Comments begin with % and their italicized content continues to the end of the
line:
% Comment

e One dimensional arrays/sequences are l-origin indexable. A subsequence
can be selected by writing sequence[m..n] with sequence[m] being shorthand
for sequence[m,m]. The function length returns the length of a sequence.

rest(sequence,n) is the same as sequence[n..length(sequence)]. Sequences can
be concatenated via the “4+” operator.

e Records are formed by the expression
(slotl : slotlexp, slot2 : slot2exp, ..., slotn : slotnexp)

where fields are separated by commas, the name of record field appears to the
left of a colon, and the value to fill that field is to the right of a comma. The
slot names act as record access functions in the notation exp.slotname. A record
can act as a sequence of length 1.
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o (name,name, ...) ;= exp means multiple assignment from a multiple- or record-
valued expression. Think of this as record disassembly.

e A Guard block consists of a sequence of predicate: action clauses; it nondeter-
ministically executes just one of the actions for which the predicate in the clause
is true (Dijkstra’s guarded conditional). The Guard block in SoftwareLifecycle
below is intended to model nondeterminism on the part of the system analyst.

A derivation history is represented as a sequence of transformations.
A quick summary of the procedures:

SoftwareLifeCycle captures the process of building and maintaining a particular
program. It is shown only to provide a sense of the kinds of actions a software
engineer might request of a Design Maintenance System.

Implement Program takes a program and returns either an implementation and
its generating derivation history or a failure signal.

Integrate integrates a delta into a history, returning a new implementation and
history, or a failure signal.

BANISH gets rid of the transformation at the head of a history by rearranging
the history so that the offending transformation is delayed as long as possible;
then the offending transformation and all transformations which depend on it
are chopped off. Banishment always shortens the derivation history by at least
1 transformation.

DeferTransformation attempts to delay an applied transformation until after
its present successor in a derivation history has been applied. It returns revised
bindings, and a possibly-revised delayed transform.

Swap Transformations attempts to exchange two transformations that are ad-
jacent in a derivation history. It returns revised bindings for the exchanged
transformations.

Preserve Transformation attempts to push a delta past a transformation already
present in a derivation history. It returns revised bindings for the already-
present transformation, and a possibly revised delta with possibly-revised bind-
ings.

Ship releases a program for use by the customer.
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Procedure SoftwareLifeCycle()
Declare DerivationHistory: History, RevisedHistory, FmptyHistory
Declare Transformation: FunctionalDelta
Declare Integer: View, Boolean: SuccessFlag
Declare Program: ProgramAtView, FmptyProgram
Declare Program: Implementation, Partiallmplementation
EmptyProgram:=nil; History:=FEmptyHistory:=nil
View:=0 % Selects where along history functional deltas will get applied
Program At View:=FEmptyProgram % Make program consistent with program at view
Ship(ProgramAtView) % Ship the 1st prototype to customer, just to be systematic
Repeat
Guard % Let software engineer choose what he wants to do next
View<length(History): % Move SE’s view later in history
Begin
View:=View+1
Program At View:=Apply Transformation( History[View], Program At View)
End
View>0: % Move SE’s view earlier in history
Begin
View:=View-1
Program At View:=Apply Transformation (11 (History[1.. View]),
FEmptyProgram)
% Recompute program as seen at this view point
End
True: % Apply functional delta anywhere in history
Begin
FunctionalDelta:=
Choose Random Transformation(ProgramAtView) % new requirement
(SuccessFlag, Implementation, Revised History) :=
Integrate(ProgramAtView, FunctionalDelta,rest(History, View+1))
If SuccessFlag Then
History:=History[1.. View]+ FunctionalDelta+ Revised History
View:=View+1 % Default additional changes to “additive”
Program At View:=Apply Transformation( FunctionalDelta, Program At View)
Ship(Implementation) % where most organizations stop
Else
Print “Can’t implement that.”
22 9% Perhaps the new delta violates an existing delta,
% perhaps we should complain, and require that the
% existing delta be explicitly deleted before proceeding.
Fi
End
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% SoftwareLifeCycle, continued...
View<length(History): % Delete a user requirement
Begin
(Partiallmplementation, Revised History) :=
BANISH (ProgramAtView,rest(History, View+1))
(SuccessFlag, Implementation, NewHistory):=
Implement( Partiallmplementation)
If SuccessFlag Then
History:=History[1.. View-1]+ Revised History+ NewHistory
Ship(Implementation)
Else
% Can’t implement program derived from history
% with deleted transformation
% Attempt to use as much of history as possible
(SuccessFlag, Implementation, NewHistory) :=
Reimplement ( Program At View, RevisedHistory)

If SuccessFlag
Then
History:=History[1.. View-1]+ NewHistory
Ship(Implementation)
Else
Print “Not implementable that way.”
Fi
Fi
End
View>1: % Change priority of user requirements
Begin

% Move existing delta to left of a correctness-preserving transform
% This can swap program deltas, too!
(SuccessFlag, Deferred Transformation, Promoted Transformation) : =
Defer Transformation(Program At View, History[View-1], History[View])
If SuccessFlag Then
% We have rearranged order of transformations.
History[View-1]:=Promoted Transformation
History[View|:=Deferred Transformation
Else Print “Can’t exchange.”
End
End Guard
End Repeat
End SoftwareLifeCycle
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Function Implement(Program: S)
Returns (Boolean, Program, DerivationHistory)
% Determines an implementation, returns a success flag
% and the history of transformation steps to obtain the implemented program
% This is the conventional scheme for transformational implementation.
Declare Boolean: SuccessFlag
Declare Program: Implementation
Declare DerivationHistory: RestOfHistory
If Implemented(S) Then Return ( True,S, EmptyHistory)
Enumerate Transformation:T suchthat Applicable(T,S)
(SuccessFlag, Implementation, RestOfHistory) :=
Implement(Apply Transformation(T,S))
If Success Then Return ( True, Implementation, T+ RestOfHistory)
End Enumerate T
Return (False,junk,junk)
End Implement

Function Reimplement(Program: S, DerivationHistory: History)
Returns (Boolean, Program, DerivationHistory)
% Determines an implementation, returns a success flag
% and the history of transformation steps to obtain the implemented program
% Attempts to reuse the derivation history.
% This is the “naive” version of derivation replay with backtracking.
Declare Boolean: SuccessFlag
Declare Program: Implementation
Declare DerivationHistory: RestOfHistory
If Implemented(S) Then Return (True,S, EmptyHistory)
If length(History)=0 Then Return Implement(S)
If not Applicable(History[1],S) Then Return Implement(S)
% If History was once valid for S, then Applicable is always true.
% This test simply makes Reimplement robust in face of old histories.
% First element of history applies. Try to use it.
(SuccessFlag, Implementation, RestOfHistory) :=
Reimplement (Apply Transformation(History[1],5),rest( History,2))
If SuccessFlag Then Return ( True,Implementation, History[1]+ RestOfHistory)
Else
% First element of history leads to program which is unimplementable
Return Implement(S)
Fi
End Reimplement
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Function Integrate(Program: CurProgram, Transformation: Delta,
DerivationHistory: History)
Returns (Boolean, Program, DerivationHistory)
% Constructs a new implementation and history for the
% program defined by ApplyTransformation(Delta,CurProgram) ...
% by revising the DerivationHistory of CurProgram to integrate Delta
Declare Program: Implementation, Partiallmplementation
Declare DerivationHistory: RevisedHistory, Boolean: SuccessFlag
Declare Transformation: PreservedTransformation, RevisedDelta
If length(History)>0
And Not Conventional Transformationallmplementation
Then
% Try to Reuse history to derive new implementation
(SuccessFlag, Preserved Transformation, RevisedDelta) : =
Preserve Transformation(CurProgram, History[1], Delta)
If SuccessFlag Then
% We were able to preserve the original transformation
(SuccessFlag, Implementation, Revised History) :=
Integrate( Apply Transformation(History[1], CurProgram),
RevisedDelta,rest(History,2)) % revise the rest!
If SuccessFlag Then
% Success at revising history and obtaining an implementation
Return (True, Implementation,
Preserved Transformation+ Revised History)
Else
% Not able to revise history and obtain an implementation.
% Perhaps we can get an implementation from CurProgram.
% If not, it is hopeless from here.
Return Implement(Apply Transformation(Delta, CurProgram))
Fi
Else
% Can’t preserve History[1] because of some inability to resolve conflict...
% with the desired Delta so make History[1] stop bothering us.
(Partiallmplementation, RevisedHistory) :=
BANISH (CurProgram, History)
% ignore Partiallmplementation
Return Integrate(CurProgram, RevisedHistory, Delta)
% Won’t loop: BANISH chops off offending transformation
Fi
Else
% No more revision possible, nothing left to revise.
Return Implement(Apply Transformation(Delta, CurProgram))
Fi
End Integrate
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Function BANISH (Program: CurProgram,
DerivationHistory: History)
Returns (Program, History)
% This function pushes History[1] as deep into the history as possible,
% chops the history off at that point, and returns the revised history.
% Because we always chop the history off, banishing cannot fail;
% at worst it returns an empty history.
% Complication: History[1] may conflict with History[2], so we can’t always
% immediately get rid of History[1]; we solve this by (recursively)
% getting rid of History[2] and then proceeding.
% This procedure costs O(length(History)?) to run.
Declare Program: Partiallmplementation, Boolean: SuccessFlag
Declare DerivationHistory: RevisedHistory
Declare Transformation: Promoted Transformation, Deferred Transformation
Assert length(History) > 1 % Or there’s nothing to banish!
If length(History)=1 Then Return EmptyHistory
(SuccessFlag, Deferred Transformation, Promoted Transformation) : =
Defer Transformation(CurProgram, History[1], History[2])
If SuccessFlag Then
% We can move transformation to banish to History[2].
% Pretend we did that, and banish it from there.
(Partiallmplementation, Revised History) :=
BANISH (Apply Transformation( Promoted Transformation, CurProgram),
DeferredTransformation+rest(History,3))
Return (Partiallmplementation,
Promoted Transformation+ Revised History)
Else
% Transformation we wish to banish is blocked by rightmost neighbor.
% So banish rightmost neighbor, shortening history, and try again.
% Safe to banish rightmost neighbor for two reasons:
% 1) This procedure can be conservative (because the Revise
%  procedure will work even if Banish throws away everything!
% 2) The rightmost neighbor depends on transformation we are trying to banish;
% if we succeed in banishing it, the rightmost neighbor’s preconditions
%  will not be present, and the rightmost neighbor can’t be saved either.
(Partiallmplementation, Revised History) :=
BANISH (Apply Transformation(History[1],CurProgram ),rest(History,2))
% ignore Partiallmplementation
Assert length(RevisedHistory)<length(History)-1
Return BANISH (CurProgram, History[1]+ Revised History)
Fi
End BANISH
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Function DeferTransformation(Program: Before,
Transformation: 15", Transformation: t%?)
Returns (Boolean, Transformation, Transformation)
% Find 13, €} and ¢, such that 122 (11 (Before)) = tgll(t?(Before))
% Here we have a British Museum Algorithm, to simplify understanding.
% This can be done much more efficiently for any particular transform type,
% e.g., tree transforms.
% Note that result may not be unique.
(SuccessFlag, Deferred Transformation, Promoted Transformation) :=
SwapTmnsformatzbns(Befare,tf1 ,tﬁ?) % try the easy case
If SuccessFlag Then Return (true, Deferred Transformation, Promoted Transformation)
Else
% Can’t simply swap the transformations.
Enumerate i3
Enumerate ()
Enumerate ¢}
If Apply Tmnsfarmation(tg2 , Apply Transformation(t,"1, Before))
= Apply Tmnsformatz’on(tg/1 ,Apply Tmnsfarmation(tg'/2 ,Before))
Then Return <true,t?,t§é>
End Enumerate ()
End Enumerate ()
End Enumerate 5
Return (false,junk,junk)
Fi
End DeferTransformation

Function Swap Transformations(Program: Before,
Transformation: tfl , Transformation: tg'z)
Returns ( Boolean, Transformation, Transformation)
% Find ¢} and ¢, such that t2 (¢ ( Before)) = tfll(t?(Before))
% Here we have a British Museum Algorithm, to simplify understanding.
% This can be done much more efficiently for any particular transform type,
% e.g., tree transforms.
Enumerate ¢}
Enumerate ()
If Apply Tmnsfarmation(tg2 , Apply Transformation(t,"1, Before))
= Apply Tmnsfarmation(tf1 ,Apply Tmnsfarmation(tg'/2 ,Before))
Then Return <true,tf1,t§é>
End Enumerate ()
End Eumerate ()
Return (false,junk,junk)
End Swap Transformations
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Function Preserve Transformatian( Program: CurProgram,
Transformation: c . Transformation: t* )
Returns (Boolean, Tmnsformatwn, Transformation)
% Attempts to preserve a transformation in the face of a functional delta.
% This function computes new binding ¢} for property-preserving transform ¢;,
% a possibly new t,., and new binding ¢, such that:
% cfll(t@2 (CurProgram)) = tféw(cfl(C’urProgram)7 or returns failure.
% Here we have a British Museum Algorithm, to simplify understanding.
% This can be done much more efficiently for any particular transform type,
% e.g., tree transforms.
Enumerate t,., % try replacements for ¢
Enumerate ¢§ % try new binding sites for ¢;
Enumerate ¢, % try bmdmg sites for t,.u
If Applminsformatwn(c 1 ApplyTmnsfarmatzon(tf2 CurProgram))
= Applminsformatwn(tmw,Applminsformatwn(ci , CurProgram))
Then Return <true,cfl1 ,t%e@
End Enumerate
End Enumerate ()
End Enumerate t,,.,

Return (false,junk,junk)
End Preserve Transformation



Appendix C
Algebras used in linear replay
example

The following algebras provide the domain axioms, and therefore the transfor-
mations used in Figure 7.21.
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stack = LAMBDA trivial IS

trivial WITH data RENAMED element

UNION

ALGEBRA

SORTS: stack, element

OPS: empty — stack
push(stack,element) — stack
pop(stack) — stack
top(stack) — element
2nd(stack) — element

EQNS:  pop(push(stack,element))=stack
top(push(stack,element))=element
2nd(push(push(stack,element2),elementl))=element2

Figure C.1: The stack algebra

tinylisp = ALGEBRA

SORTS: atom, seq

OPS: listify(atom) — seq
atomize(seq) — atom
nil — seq
cons(seq,seq) — seq
car(seq) — seq
cdr(seq) — seq
cadr(seq) — seq
list(seq) — seq

EQNS:  atomize(listify(atom))=atom
listify(atomize(seq))=seq
car(cons(seql,seq2))=seql
cdr(cons(seql,seq2))=seq?2
cadr(seq)=car(cdr(seq))
cons(seq,nil)=list(seq)

Figure C.2: Algebra for Lisp fragment
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