
8th Annual Workshop on Software Reuse 1 © 1997 Semantic Designs, Inc.

Organizing and Enabling Domain Engineering to Facilitate Software Maintenance
Christopher W. Pidgeon, Ph.D.

Semantic Designs, Inc.
12636 Research Blvd. C-214

Austin, TX 78759-2200
+1 512-250-1018

cwpidgeon@semdesigns.com

Abstract

Semantic Designs, Inc. is producing a prototype Design Maintenance System (DMS), a fundamentally different
software engineering environment. It is a semantically-based software engineering environment—one which
emphasizes tool-supported design capture and modification. We preserve design knowledge by requiring and
enabling the design to be updated as a natural by-product of maintenance acts. DMS embodies seven key ideas:

1) Software engineering processes must be comprehensive, i.e., include both development and maintenance.

2) Software maintenance is impossible without domain engineering!

3) The domain definition produced by domain engineering must be machine processable in order to achieve any
degree of automation.

4) Domain engineering must produce a set of composable domains rather than a single, large, monolithic one.

5) Recording how domain knowledge is used in the synthesis of an application constitutes the application’s design.
A persistent design is essential to effective maintenance.

6) Practical domain engineering must be:

• incrementalto scale for maintenance of legacy systems;

• cumulativeshould carry into projects other than the one that generated it.

7) Reverse engineering for maintenance should be cast as a domain engineering activity to produce components.

Keywords:

Software Engineering Environment, Domain Engineering, Domain, Design Maintenance, Reuse

Workshop Goals:

We hope to “infect” others with our meme for software maintenance.

8th Annual Workshop on Software Reuse 2 © 1997 Semantic Designs, Inc.

Background: DMS, A Domain-based Software
Engineering Environment

Semantic Designs, Inc. is producing a prototype Design
Maintenance System (DMS), a fundamentally different
software engineering environment. It is a semantically-
based software engineering environment—one which
emphasizes tool-supported design capture and
modification. We preserve design knowledge by
requiring and enabling the design to be updated as a
natural by-product of maintenance acts. Programmers
do not touch the code! How is this achieved?

DMS includes a semi-interactive code generation
engine. Knowledge for code generation is organized
into a network of domains. Domain Engineering
identifies problem concepts and implementation
knowledge comprising the domain interconnection
network. A DMS domain expresses:

• problem domain concepts in terms of a domain
specific language syntax and semantics; and

• implementation knowledge in terms of
transformations—intra-domain optimizations—and
refinements—inter-domain concept mappings.

The domain interconnection network identifies
potential mappings of abstract problem ideas to target
implementation ideas. During Application
Engineering, the software engineer guides choices
among alternative mappings. The code generation
engine uses domain implementation knowledge to
mechanically transform identified abstract domain
concepts into target implementations. DMS records the
actual transforms used and their justifications as part of
the design's history. During a maintenance episode, the
software engineer can browse the design and its history
to identify and specify changes. Then, DMS is used to
install the desired changes by revising the recorded
design and its history. This approach yields a
continuous, incremental model of software
construction—one that explicitly addresses
maintenance.

Key Position: Tool-supported Domains are key
for the entire software lifecycle—including
maintenance.

8) Software engineering processes must be
comprehensive, i.e., include both development and
maintenance.

9) Software maintenance is impossible without
domain engineering!

10) The domain definition produced by domain
engineering must be machine processable in order
to achieve any degree of automation.

11) Domain engineering must produce a set of
composable domains rather than a single, large,
monolithic one.

12) Recording how domain knowledge is used in the
synthesis of an application constitutes the
application’s design. A persistent design is
essential to effective maintenance.

13) Practical domain engineering must be:

• incrementalto scale for maintenance of
legacy systems;

• cumulativeshould carry into projects other
than the one that generated it.

14) Reverse engineering for maintenance should be
cast as a domain engineering activity to produce
components.

Position 1: The goal for DMS is the efficient and
effective support for the incremental construction and
maintenance of large application systems driven by
semantics and persistent designs.

DMS is a software engineering environment that
records:

What a system is supposed to do— the specification.

How the implementation does it—the code.

Why the implementation works correctly and meets
performance goals—the design.

A key feature of DMS is machine interpretable
semantics (denoting the meaning of programs). This
allows DMS to provide specification analyses, assist in
the choice of implementations, as well as supply
explanations of implementations.

The knowledge required for DMS is organized by
problem domain. A DMS domain definition includes
the following parts:
• Syntax—two equivalent forms for specification:

w External formsuitable for human
processing, e.g. string or graphical

w Internal formsuitable for machine
processing, e.g. hypergraph

• A means for converting between the two forms for
specification syntax:
w Parserexternal form to internal form
w Unparserinternal form to external form

• Semanticsthe meaning of a specification
• Optimizationshow to simplify or elaborate a

specification within the domain
• Refinementshow to transform a specification

between domains
• Analyzershow to measure “interesting”

properties of a specification

Organizing and Enabling Domain Engineering to Facilitate Software Maintenance C.W. Pidgeon

8th Annual Workshop on Software Reuse 3 © 1997 Semantic Designs, Inc.

Position 3: All of the elements of a DMS domain are
machine processable.

Some Domain Engineering proponents choose to define
a domain as a problem area of interest chosen by
subject matter, customer application need, community
of users, etc. Practical problems in a domain must be
implementable. This requires experience in solving
such problems. Engineers must be able to articulate
implementation knowledge. For a DMS domain
definition to be considered feasible, we insist on the
presence of such knowledge. Otherwise, there is little
hope for machine support. The domain is relegated to
mere expository roles. It cannot be considered an
active element in software synthesis or maintenance.
Thus, a DMS Domain realizes two important notions:

1) As a design product description it provides a
machine processable notation which can be used to
express the intentions for a software artifact.

2) As a design process description it provides a
machine processable means to describe how
intentions in one domain notation may be realized
in alternative other domain notations.

The DMS environment, then, supports two activities:
Domain Engineering and Application Engineering.

DMS Support of Domain and Application Engineering

The following signatures characterize the functionality
of DMS tools supporting Domain Engineering.

Parser Generator:
GrammarDomain → ParserDomain

Unparser Generator:
GrammarDomain × Rendering RulesDomain →
UnparserDomain

Semantics Definer:
External FormDomain × ParserDomain × Domain
DescriptionOtherDomain → SemanticsDomain

Transform Definer:
External FormDomain × ParserDomain × SemanticsDomain ×
Domain DescriptionTargetDomain → TransformsDomain

Performance Analyzer Definer:
External FormDomain × ParserDomain × SemanticsDomain ×
Domain DescriptionTargetDomain → Performance
AnalyzerDomain

Many of these tools aid the domain engineering process
by providing consistency checks on proposed Domain
Definitions.

The following signatures characterize the tools that
were synthesized during Domain Engineering for use in
support of Application Engineering.

ParserDomain:
External FormDomain → Internal FormDomain

UnparserDomain:
Internal FormDomain → External FormDomain

SemanticsDomain:
{f map(Internal FormDomain, Internal FormOtherDomain)}

TransformsDomain:
Internal FormDomain × Location → Internal FormDomain

Performance AnalyzerDomain:
Internal FormDomain × Internal Form Location ×
Performance Parameters → Performance Value

Under the guidance an Application Engineer (who
views specifications in their external form) DMS is
directed to perform property preserving
transformationsoptimization or refinementon
internal forms until a final implementation is achieved.
The finality here is determined by the Application
Engineer who stipulates the properties of a
specification which constitute a final implementation,
usually called code. Example properties include:

• the specification is expressed in a particular set of
target languages (e.g., ANSI C, SQL, POSIX)

• the specification has particular performance values
e.g., sort complexity = Ο(n ln n), interactive-
response-time < 5 sec.

Position 5: DMS records the transformational
derivation history for the design in order to support
subsequent changes. However, unlike naive code
regeneration from scratch, DMS uses sophisticated
compiler and delta propagation technology to
propagate changes through the design and derivation
history. This is how we achieve scaleability, but the
topic is beyond the scope of this position paper.

Domain Engineering: in-the-large vs. in-the-small

Position 4: For any particular problem domain, we
favor a modest number (~10 to ~100) of modular,
specific purpose domains over a small number (~1) of
monolithic, general purpose domains. This allows
reuse of most of the very specific domains in new
problem areas.

Modular Monolithic
Number of Domains ~10 to ~100 ~1
Ease of Acquisition Easier Difficult
Ease of Application Easier Difficult
Reuse Potential Higher Lower
Development &
Maintenance Cost

Lower Higher

Repository Management Tractable Trivial

Organizing and Enabling Domain Engineering to Facilitate Software Maintenance C.W. Pidgeon

8th Annual Workshop on Software Reuse 4 © 1997 Semantic Designs, Inc.

In essence, this devolves to the argument between a
larger number of more specialized domains having
more desirable properties than a smaller number of
more generalized domains.

Position 6: We propose a domain interconnection
network as exemplified below.

Natural
Language

Teller

Electronic
Funds

Transfer

Fighter
Aircraft

Navigation

Specific
Application
Domains

Natural
Language
Parsing

Generic
Application
Domains

Control
Flow

Data
Structures

Parallelism/
Distributed

Computation

Computer
Science
Domains

Procedural Logic Functional
Execution
Model
Domains

C++ Prolog Miranda
Target
Execution
Language

Money
Management

Real
Time

Control

Box = DMS Domain, Arrow = “implemented using”

DMS will be made available with a collection of
reusable domains (shaded region) either from the
vendor or third parties. Domain Engineers concentrate
on defining the value-adding generic and specific
application domains that are defined and implemented
in terms of the other implementation-oriented domains.

What’s a Component?

The prevailing notion is that a component ultimately
connotes a fragment of code that realizes some domain
concept. Quite often the domain concept is implicit, at
least from the perspective of a tool expected to support
implementation of the concept. The advantage to this
approach is that anyone can write them. The
disadvantage is that they can be quite hard to use.
Why? There are usually no explicit composition rules.
One merely concatenates the code fragments. Another
disadvantage is that it is difficult to discern the
applicability conditions for the component. Will it
work in my configuration? What assumptions is it
predicated upon? What constraints does its use impose
on subsequent design and implementation decisions?

Position 7: A DMS Component is a triple <domain,
concept, method>. The domain establishes the problem
contextit indicates available background knowledge

like other components, performance measures,
optimizations, etc. The concept, which may be
parameterized, is the explicit idea being realized.
Method is the transformation control plan to implement
the concept. It implicitly requires transforms. It may
require components at lower level of abstraction. It
may be shared with other domain concepts. The
composition rules are defined by the transformations,
and can be checked when applied.

How Do You Get Components?

Position 7: Reverse engineering is a legitimate,
pragmatic domain engineering activity. The process is
simple to define, though challenging in practice:

1) Abstract the legacy code through domains.

2) Encode the transformational knowledge to support
forward engineering.

3) Generalize and account for component
interactions.

By recasting reverse engineering for maintenance as a
domain engineering activity, we achieve several
desirable outcomes:

• focus is redirected to the production of reusable
artifacts (not merely patching the extant code);

• we reduce the cost of future maintenance (because
future maintenance activities are able to reuse the
efforts of prior ones);

• we should be able to recoup some of the
investment in a legacy system (by decrypting and
making persistent their domain concepts and
construction technologies);

• the stature of maintenance is elevated (by moving
from remediation to business value-adding).

Conclusion

Position 2: Domain engineering is essential for
comprehensive, anticipatory software production and
maintenance.

In sum, a DMS domain captures problem domain
concepts and construction knowledge. The principal
task of domain engineering is the identification of the
domain concepts and implementation knowledge, and
encoding that knowledge so it can be reused. The
DMS domain interconnection graph identifies potential
maps of abstract problem ideas to target execution
languages. Since DMS is aware of domains, their
interdependencies, and their parts, they can be used by
DMS to mechanically transform specified domain
concepts to code. In the process, the actual transforms
and their justifications are recorded as the design.
Using the external form in a familiar notation, both the
application engineer and the domain engineer can

Organizing and Enabling Domain Engineering to Facilitate Software Maintenance C.W. Pidgeon

8th Annual Workshop on Software Reuse 5 © 1997 Semantic Designs, Inc.

navigate the design, moving freely across domain
notations to understand how the code works and why it
is present in a particular configuration.

Acknowledgements

Construction of a DMS prototype is supported by the
National Institute of Standards and Technology,
Advanced Technology Program, Component-Based
Software Initiative.

References

[1] G. Arango, I. Baxter, C. Pidgeon, P. Freeman,
“TMM: Software Maintenance by
Transformation”, IEEE Software 3(3), May 1986,
pp. 27-39.

[2] I. Baxter, “Design Maintenance Systems”, CACM
35(4), Apr. 1992, pp. 73-89.

[3] I. Baxter, “Practical Issues in Building Knowledge-
based Code Synthesis Systems”, Proc., Sixth
Annual Workshop on Software Reusability,
Owego, New York, Nov. 1993

[4] I. Baxter, “Design (Not Code!) Maintenance”,
Proc. ICSE-17 Workshop on Transformational
Modification, Seattle, Washington, Apr. 23, 1995.

Biography

Dr. Pidgeon received a B.S. in Computer Information
Systems (1976) and a Masters in Business
Administration (1978) from California State
Polytechnic University, Pomona. He received a Ph.D.
in Computer Science (1990) from the University of
California at Irvine where he studied with the Reusable
Software Engineering (REUSE) group under the
direction of Dr. Peter Freeman (now the Dean of the
College of Computing at Georgia Institute of
Technology). From 1979 to 1991 Pidgeon taught
undergraduate and graduate courses for the Computer
Information Systems Department at Cal Poly, Pomona.
From 1988 to 1992 Pidgeon was a scientist with
Hughes Space & Communications group. From 1992 to
1995 he was a director with Cambridge Technology
Partners. Together with Dr. Ira Baxter, he founded
Semantic Designs, Inc. in September of 1995.
Subsequently Semantic Designs was awarded a three
year, $2M grant to develop the prototype Design
Maintenance System.

