
TMM: Software
Maintenance by
Transtfrmaton

Guillermo Arango, Ira Baxter, Peter Freeman, and Christopher Pidgeon
University of California, Irvine

Porting an 1 v aintaining software with woe- * The original author was not available
undocumented pro- fully out-of-date design for consultation.

documents-or none at all- The complexity of the task (and the
grm without any is an unfortunate reality for many software desire to practice what we preach about
source changes practitioners. As needs change, software reuse) compelled us to look for means of

must be amended, or maintained, to adapt conversion other than manual reim-demonstrates the to the new environment. Often, such adap- plementation. Our problem was twofold:
value of a transformra- tation involves porting programs from one (1) we had to determine what the code was
tional theory of main- machine to another. If there is no informa- doing (leading to the idea of abstraction
tenance. The theory

, tion about original design decisions or recovery), and (2) we had to reimplementtrance. aTne theory iS abstractions, the software becomes obso- it (here, we could use Draco, since it sup-
based on the reuse of lete, and the enormous resources invested ports a paradigm for the implementation

knowledge. in its construction are lost. of software from components). Our port-
To avoid this waste, we propose a ing effort proved successful.

method that will allow practitioners to
recover abstractions and design decisions
that were made during implementation. General vs. domain-
This method, called the transformation- specific languages
based maintenance model, or TMM,1 is'- ' ~After successful application of abstrac-not just theory; it has enormous practical tion recovery, we began to develop thevalue as we proved when we successfulvalue-as we proved when we succesfully TMM as a formal model of software main-ported an undocumented, complex soft-
ware system without any source changes. frlan ipulto of problem in

formal manipulation of problem domain
We developed the TMM as a result of 5and software design knowledge. Hagueour own software maintenance frustra- discusses the idea of a "super" language

tions. During our research on the reuse of customized for the application domain.
software engineering artifacts and knowl-- - ~~~~~~~~~~~~~~~~~Sucha language would then map onto a
edge, we relied heavily on a prototypes ~~~~~~~~~reallanguage. Hague claims that any gainsystem, called Draco.24 Because the com- in flexibility may be lost because the lan-
puter on which the Draco system was devel-

opedandopertedhad o b remved weguage may not compile on a real machine.
oped and operated had to be removed, we Thus, he rejects the idea of a super lan-
were forced to consider porting the system guage. The Draco paradigm suggests an
to another operating environment. In other a t*alternative that makes compilation pOSSI-words, we had all the makings of a classic ble for domain-specific languages. We
maintenance problem; namely,-maintenanc problem namthink the idea of a super language should

* Other than technical reports and pub- be reconsidered-one for each domain.
lications describing the conceptual F a aFollowing an approach similar to
ideas behind the system, the only 6ideas behind the system, the only Hague's, Boyle employs an extended ver-
documentation available was the sion of Fortran as a single base language.
source code. By extending the base, new classes of

* Members of the research team abstractions are expressed. In our para-
charged with responsibility for theig
port were inexperienced with the and deserve separate notations. Boyle's

mechansmsued by raco.approach suffers from the limitations
impicit in wide-spectrum languages;7

An earlier version of this article, entitled "Main- usinasigebelnugeimtth
tenance and Porting of Software by Design Recovery, ng a sigl bas lagug liish
was presented at the Conference on Softwfare Main- trnfmainlentvstohepm-

- tenance, Washington, DC, 1985. tives used by the language.

May 1986 0740-7459/86/0500/0027$0i.O0 ©) 1986 IEEE 27

Managing change specifications. Each specification is com- usually more) domains. The domains of
Basically, we see four major reasons for posed of components from a mixture of interest are formalized before program

change: domain areas relevant to the problem. The construction begins. This formalization
* Performance must be enhanced. notion of a domain-an area of captured effort, called domain analysis, addresses
* The program must operate in a differ- expertise-is fundamental. Within a the difficult task ofhow to extract the com-

ent environment. domain is a set of components. The pur- mon structures from a class of problems to
. Different functions are required. pose of each component is to capture a produce the parts of a domain. Domain
* A design error must be corrected. semantic primitive for the domain. For analysis is a key issue in the application of
Many authors5'8'9 think these changes example, the domain ofarithmetic includes the Draco technology and one of the cen-

must have different solutions, as evidenced components for addition and multiplica- tral research concerns of our project.
by their varying definitions of portability, tion. The domain of relational database The description of a Draco domain con-
transportability, and adaptability. We pre- includes components for select, project, sists of
fer to think of software maintenance as and join. Each component of a specifica- * domain semantics expressed as an
Boehm'0 does: "the process of modifying tion is transformed into an implementation (informal) set of concepts (repre-
existing operational software while leaving by selecting from a library of possible sented by components) composed of
its primary functions intact." implementations. objects, operators, and relations;

Because our method recovers design and The Draco paradigm is an instance of a * domain language described by a for-
uses it to reimplement the program, the more general class of domain-modeling mal external notation for specifying a
reason for the change doesn't really mat- approaches to software construction. problem in the domain (a concession
ter. The reimplemented program may have (Partsch" gives an excellent overview of to human engineering);
different functions or enhanced perform- transformatiP)nal systems for those * an abstract graph schema, which pro-
ance; theTMM unifies the management of unfamiliar with the transformational vides a formal internal representation
change regardless of its cause. approach to programming.) The Draco for the notation in terms of the

paradigm assumes that one will construct domain semantics;
The Draco paradigm a number of similar software programs. * domain parser, a recognizer that maps
The Draco paradigm is a method for These programs share the property that sentences in the domain language

constructing software systems from they operate on objects from one (or onto the graph schema;
* prettyprinter, a mechanism that gener-

ates domain language sentences from
the graph schema (the inverse of the

Why are software changes so difficult? parsing process);
: ~~~~~~~~~~~~~~~*aset oftransformations that map inter-

We spend a fortune on software design and development. As needs change, we would
like to preserve our investments through appropriate changes in the products. It sounds nal representations in a domain to
simple enough, so why is the changing process so difficult? equivalent internal representations in

In most cases, the original design is inaccessible. The original requirements analy- the same domain, generally used for
sis and specifications, if recorded, are out of date and do not correspond precisely to optimization; and
the code Moreover, scattered throughout the code are idioms that correspond to idi- a set of refinements that map individ-
osyncrasies in the current software environment. The code for even the most straight- a strac nepts themai to
forward algorithms is almost always disguised by optimizations that depend heavily ual abstract concepts in the domain to
on both local context and on (inaccessible) global design decisions. Code for complex configurations of concepts in other
algorithms is nearly impossible to disentangle domains closer to a target implemen-
The parts of the design and environment that are documented are usually not tation.

machine processible The maintenance task then becomes one of manual process-
ing, which is both expensive and unreliable There is also a popular perception that small
changes in a system require correspondingly small efforts. Because we cannot under- Virtually all systems implemented with
stand the ramifications of a change, we optimistically assume that the change can be Draco define at least two domains: a high-
easily dore. When inappropriately simple changes are made, they often introduce incon- level application domain and a low-level
sistencies that later require extensive testing and further analysis to locate and debug. executable domain (e.g., Pascal, Lisp,
Changes made to a program in the past leave scar tissue; code is not easily changed assembly language). Software develop-

because of the ripple effect on the rest of the software. Over its lifetime, a system is
dissected, modified, and sewn back together until its form is beyond recognition. Horror ment using Draco starts with an abstract
stories about these software Frankensteins are well-known to practitioners. specification from a combination of
Our capacity to make changes to software systems is limited if we must rely on man- domain languages. A component of a

ual methods. At best, we can count on the maintenance team's ability, which can be specification can be implemented using
enhanced only through better design. A more realistic choice is to transcend the limits
on manual methods by using automation, as we have done with the TMM described any applicable refinement; implementing
here. a concept produces a revised specification

___ closer to an executable form. The imple-

28 IEEE SOFTWARE

The Bettmann Archive

mentation process traverses a path through and constitutes what is generally called the shows that all programs can be constructed
a space of possible implementations design. This path can be viewed as an from refinements; the only difference is
toward progressively lower abstractions explicit representation of stepwise refine- how many.
until a concrete implementation is reached. ment as proposed by Wirth."2
The space forms an enormous directed A mechanism called tactics controls
acyclic graph, called a possible refinement navigation through the graph. Tactics Developing the TMM
DAG (Figure 1). allows the application of the trade-offs In this discussion of our transformation-
Nodes in the DAG represent specifica- used by the designer in decision making. based maintenance model, we have made

tions for the program written using the Tactics can be used to achieve different a number of assumptions. We assume that
domain languages. The single root of the implementation goals, such as speed, min- a program has been derived from a speci-
graph represents the initial system specifi- imal space, and rapid prototyping, and sep- fication using the Draco paradigm. Fur-
cation. Leaves are executable specifica- arate tactics can coexist. Tactics may use ther, we assume that the specification, the
tions, that is, programs. Intermediate data from a number of sources: the set of refinement DAG, and the implemented
nodes represent specifications at varying possible refinements, conditions on refine- program are available to a would-be main-
levels of abstraction. Each node except the ments, information stored in the tactics, tainer. (Later, we discuss how to perform
root represents a correct partial implemen- the current specification, and even answers maintenance when only the implemented
tation of the initial program specification. from a human. Tactics serves as the basis program is available.) If many changes
(Refinements are required to preserve cor- for a design's rationale. need to be made to a program, we make
rectness.) The higher the node in the DAG, The Draco paradigm we have just them one at a time.
the more abstract the specification. Arcs described applies to all programs. We can Using the Draco paradigm, we can
represent possible design choices (use of see its applicability by considering a single change a program in two ways:
some refinement or optimizing transfor- refinement that converts a program speci- (1) Choose a different implementation.
mation). An implementation for a specifi- fication into a particular implementation. Here, we choose an entirely new path
cation corresponds to the path from the While this view is somewhat trivial, it through the refinement DAG from the ini-
root node to one of the leaves. For the
remainder of this article, the term "speci-
fication" can mean the original specifica-
tion (root), an intermediate node, or an For example:
executable specification (leaf). 1 n2 contains Sort-Symbol-Table
The refinement DAG is never con- r2 is Use-Heapsort-Algorithm

structed in its entirety. The only paths / n3 contains Sort-Symbol-Table instan-
requiring exploration are those needed to r tiated with Heapsort-Algorithm
reach the desired leaf from the root. Nor-
mally, only one path is explored; branches
emanating from it represent rejected design Abstract specification
choices.

For example, consider the DAG in Fig-
ure 1. The node n2 could represent the
specification containing the abstraction //
Sort-Symbol-Table; the arc r2 might repre-
sent the design choice Use-Heapsort-
Algorithm. The node n3 would represent
the refined specification, which includes
the abstraction Sort-Symbol-Table-Using-
Heapsort; that is, n3 contains the code to
implement Heapsort. Similarly, r3 could
represent the choice of data structure for
the symbol table, and so on.

Usually, an individual node can be
reached by many paths, representing
differing orders of choice of the same set Concrete
of design decisions. A path from the root program P
to a leaf represents a particular choice of
a set of implementation design decisions Figure 1. Construction of program from specification refinement decisions rl, r2, and r3.

May 1986 29

tial specification (root) to a different imple- The second method, in which some tion. We exploit this commutativity to
mentation (leaf). design decisions are reversed, involves a undo only the undesirable design deci-

(2) Start with the implementation and concept called the least common abstrac- sions.
reverse some of the design decisions, mov- tion (LCA). At some point along the path A new path must then be chosen from
ing up the refinement DAG toward the up the refinementDAG toward the root, we the LCA to the desired implementation. As
root. Having undone a sufficient number reach a node that encompasses both the illustrated in Figure 2, the original design
of design decisions, we then reimplement current (undesired) and desired implemen- decisions r2 and r3 are reversed. This rever-
by making new choices-descending to a tations. This node is called the LCA. It is sal reflects ascension to the LCA node (n2)
different leaf. the top node of an embedded sub-DAG covering the original implementation P
The first method is equivalent to reim- and can be reached by any of several paths and the desired implementation P'. P' is

plementing the program from scratch and in the original DAG. (Only one of these then achieved through the alternative
is generally not preferred. Often, many of paths was traversed in the original imple- design decisionsr.'2 and r3. This path is
the design decisions made in the original mentation.) the descension to the desired implementa-implementation can be used again in reim- This path has regions in which the order tion P t
plementation. For example, suppose the that some design decisions are applied does
structure of the symbol table inma compiler not affect the final implementation. Con- Consider our symbol table example:
must be changed. Some parts of the com- sequently, we can make design decision ascending to the LCA corresponds to
piler coupled to the symbol table might reversals in any order. For example, we can reversing the decision to implement the
also require change, but the implementa- choose the data structure before the sort- abstraction, Sort-Symbol-Table, using the
tion of other unrelated parts, such as the ing algorithm for a table, or vice versa. Heapsort algorithm. Descending through
token builder, parser, and code generator, Thus, the order we ascend through specifi- the r2 refinement corresponds to choosing
could remain unchanged. In other words, cations in the DAG to the LCA usually a different algorithm, namely, Quicksort.
many of the original design decisions are differs from the order we would descend This method preserves all implemen-
reusable in this example. through them to the original implementa- tation design decisions made above the

LCA (i.e., r,) and thus minimizes the work
required to change the program.

We can identify an LCA by
Abstract specification n n2 contains Sort-Symbol-Table (u) identifying portions ofPthat contrib-

r2 is Use-Heapsort-Algorithm ute to the undesirable behavior, and
n3 contains Sort-Symbol-Table instan- (2) reversing design decisions until the

tiated with Heapsort-Algorithm undesirable portions have been collected
r, r2 is Use-Ouicksort-Algorithm into a single component within a node. In

In contains Sort-Symbol-Table instan- Figure 3, node n1 contains the desired
tiated with Ouicksort-Algorithm LCA. The component K is not at fault

t LCAt n2 | because, by definition, it is a semantic
primitive of the domain. Thus, it is some
implementation of the component that is
at fault.

r\ / \ \ r2 The refinements to be reversed are deter-
mined solely by the requirement to collect
all code related to the undesired behavior
into a single component. This requirement
may mean reversing design decisions in
parts of the program not obviously
involved with the fault. In practice, this
reversal is the same as making changes in

r3' ,z, \ / j r Xone part of a program because a change
F3 , t2madeto another part requires them.

Reversing refinements that do not contrib-
ute to this collection implies reimplement-
ing parts of the program that do not need

PI P change.
As illustrated in Figure 3, the undesira-

Figure 2. Refinement r1 is preserved during maintenance. ble parts in the current implementation nk

30 IEEE SOFTWARE

The Betimann Archive

are collected through successive steps r-' representations and corresponding proce- direction is changed by changing the tac-
until a single covering component K is dures are already contained as refinements tics that govern the implementation deci-
reached, thus defining ni as the LCA in the domains used to generate the current sion process.
node. In other words, the terminating con- program, but they were simply not used.
dition for ascending the DAG is whether or If they are not already contained, then Change of environment. Changes in the
not all parts requiring change (and their the domains must be augmented accord- environment can be accommodated in a
dependent fragments) have been collected ingly. For example, there may be reasons to manner similar to enhancing performance.
in a single abstraction. change the linked list representation for the The domains are first augmented with new

In Figure 3, component K might stand compiler's symbol table into an array refinements (r ,, in Figure 4) specifying
for the symbol table abstraction. Refine- structure. However, refinements for the how the abstractions used in those
ment r, implements the symbol table in definition and manipulation (using access domains can be implemented by the new
terms of components K, (which defines or update methods or appropriate sorting environment. This implicitly produces a
the data structure) and K2 (which defines algorithms) of array structure are not avail- refinement DAG that contains the original
the sorting algorithm). In turn, refinement able. The data structures domain would DAG plus some new possibilities intro-
rj implements component K, using some then have to be augmented with the cor- duced by the new refinements. In the com-
specific configuration of data structure responding refinements. piler example, a possible requirement is
and access methods. Presuming we need to Some nodes in the refinement DAG are that a new implementation be run on a
change something concerning the imple- LCAs that allow reimplementation of the machine with limited memory; the symbol
mentation of the symbol table, we com- current, low-performance abstractions. table would therefore be in secondary stor-
mence a series of collection steps beginning Design decisions are reversed to travel from age. The data structures domain might
with the current implementation nk. The the current implementation back to one of need new refinements, for instance, to
collection step rj-' corresponds to revers- those LCAs. New decisions are applied to implement the Sort-Symbol-Table abstrac-
ing the refinement rj. That is, all parts in arrive at a different implementation. tion using external sort mechanisms. In our
the current implementation are collected Within the Draco paradigm, refinement example, the refinement rnew corresponds
within component K,. The process con-
tinues until the termination condition is
reached-that is, until all parts affected by
the change are collected within a single
component.

In a practical maintenance situation, a
programmer uses his knowledge of the
application, previous experience with simi- K = nLCA
lar applications, and information from the
literature to identify the parts of the pro-
gram responsible for the unwanted\
behavior. Each part, together with other r! / ..
pieces of coupled code, is collected into a f
covering abstraction. This step is repeated
until all the identified parts have been 2 n
abstracted into a single component, which K,
is then reimplemented.

Achieving implemen- Legend: \
tation goals * "Obviously" undesirable'r itationgoals * ~~~~~~~~~p°arbtVsof tshe implemnentation rs4
The procedures given below assume that p

the specification, the refinement DAG, and o Code unrelated to
the implemented program are available. the undesired parts

Enhancing performance. Performance Candidate areas

is changed generally by (1) changing the for collapsing nk = implementation
underlying representations used by a pro-
gram and (2) using more efficient proce-
dures made possible with the changed
representation. We assume that the revised Figure 3. Finding an LCA: Collecting components into a single component.

May 1986 31

tni J Abstract specification

Least common abstraction to Mergesort. A suitable LCA is found and
re-refined using the new refinement.

Changing the function. The function is

/ \ r2 h \ >N r2 changed by changing the specification.
Then, the new specification is simply re-
refined to a particular implementation.

Il Refining the new specification creates a
5nS8 < s n3

new refinement DAG, as shown in Figure
5. The specification for n, is changed to
n , and an entirely new refinement path

r3a / I \ // \ must be followed.
rnew + \ // r3 \ A more efficient method is to determine

how the DAG that implements the original
specification is related to the DAG that
implements the revised specification. In
particular, we wish to discover a set of

p' p maintenance substitutions that relate the
two DAGs. This set of substitutions must
preserve the part of the design that will not

Figure 4. Changing environment: rew = Use-Mergesort is a new refinement. change. The box at right presents the intu-

GG
-~~~~

r2~~~~~~~~~~~~~~~~~~~r

r3 ~~ ~ ~ ~ ~~r~* 3f

P P

Figure 5. Changing specification: Commonality of design structure between G and G' under S, the set of substitutions S,.

32 IEEE SOFTWARE

Determining maintenanceNosubstitutions
One can always determine a substitution S1 that converts the original speci-

fication to the revised specification. (This can be constructed automatically as
the original specification is revised by analyzing the editor commands.) S1 cap-
tures the essential difference between the specifications. Both the original and
the revised specification can be composed of configurations of components from
several domains.

ition for the construction of a set ofmain- Nowwe determine the parts of the DAG for the revised specification that match
tenance substitutions. A procedure for the DAG derived from the original specification. Consider Figure 5. For each node
computing maintenance substitutions is n, in the original refinement DAG, one can attempt to construct an Sithat converts
available elsewhere.I n,to n!; however, the formal methods for performing the construction are rather
Given asetof maintenance substitutions messy and are available in our technical report.' Intuitively, each Si is related

Si, we can then move up the original DAG directly to the Si of its parent and isa function of the refinement used to get from
until we find an LCA-a node where one n, to ni. Each Si has one of the following three properties: (1) it is not computable,
of the substitutions may be applied. We (2) it is trivially computable by virtue of being identical to Si of its parent, or (3) it

is some function of Si and r,. SQme of the Si values simply do not exist because
apply the substitution, thus converting the there is no method of using r, on nl!. Some of the Si values are trivially computa-
LCA into the corresponding node in the ble because r, does not affect the portion of the specification being changed (see
revised DAG. Subsequent design choices figure below), and thus Si is still applicable at n,. If the portion of the specifica-
are made on the path to a new implemen- tion undergoing change in ni is affected by the implementation decision r1, then
tation. (This process is indicated by the Si is clearly a function of Si and r1. It is easy to determine whether each Si is com-
dashed line from n4 in Figure 5.) Thus, we putable. Furthermore, if one is computable, the actual computation is easy. The
have avoided remaking allthe design deci- set of Si values that are cornputable determine parts of the implementation DAGs
sions in the common part of the two DAGs. that have the same design histories, G and G '(see Figure 5). Given a concrete pro-

In a modular specification, each part of gram P one can reverse design decisions until some node nLCA in G is found (this
thspecification h.sits own refinement

is an LCA by definition), apply SLCA to find the corresponding node in G, and applythe specification has its own refinement a new design decision to implement nLcA-
DAG. The implementation consists of a set Some could argue that to compute,Sone must not only have but also apply all
of leaves, one taken from each DAG. A the r1 values on the path from the root to Si sequentially to S5, and thus there is
change to the specification, then, affects hardly any savings compared with applying all the r, values to the root node itself.
only some of the specification modules, This is not true for two reasons.
andsoonlysomeoftherefinementDAGs. First, presumably the Sivalues are much smallerthan the corresponding ni
Leaf nodes from DAGs that do not change values, resulting in the manipulation of much smaller structures than n1. If Siwere
can be used unchanged in the new imple- not much smaller than the corresponding n1, it would be more economical to
mentation. Theprocedure outlined iiRthis reimplement the specification from scratch.men achievingegroalse canbuediatos Second, many of the r, have no effect whatsoever on Si when applied (cor-section on achieving goals can be used to responding in practice to the fact that a change leaves parts of the software
generate new leaves for thechangedDAGs. untouched). Each S, value refers to some specific part of ni; each r, value refers
Thus, modularity is seen simply as a to some other, perhaps overlapping, part of n, (see figure below). If there is no
method for making trivial the determina- overlap, then Si is identical to S,. If there is overlap, then Si will be different from
tion of the similarities on portions (the S,. In other words, many refinements implement some portion of the program not
unchanged DAGs) of (what would other- affected by the change of specification. Such refinements cannot affect the var-
wise be) a single, large refinement DAG. ious changes of specification and therefore requi re no energy whatsoever to apply
Hence, we can understand why well- to the various Si values. In fact, we need not even know what they are; we need
modularized systems are easier to main- to know only that they have no effect on the change of specification. Maintenance
tain programmers scan the entire program when told to make a change and uncons-

ciously reject parts of it as unrelated. This corresponds to deciding that r, does
not affect the change of specification. The only refinements we must know are

Correctingadesignerror.Adesignerror those that affect the change of specification, so maintenance programmers
can be corrected by using the techniques should look very carefully at the parts of code they expect to change.
just discussed. Design errors are either
(1) failure to generate the correct specifica-
tion or (2) failure to follow a correct spec- n_ ni

ification. Incorrect specifications may be
treated by changing functionality. Incor-
rect implementation corresponds to having
a faulty refinement, which is easily resolved ni
by (1) adding a corrected refinement, n

(2) applying the technique discussed sj
earlier for changing the environment, and
(3) removing the faulty refinement from No interference: sa =S Interference: sl = ri (s)
the set of possible implementations.

Inesummarythssilen thplefmentalton-s._____ Denotes part of specification that is changedIn summary then, the fundamental con-
cept in our model of maintenance is to The effect on S, of r, overlapping with Si.
capture the change in an LCA and reimple-_I

May 1986 33

ment only the LCA. In performance and The abstraction recovery paradigm imi- approach MBA, or maintenance by ab-
environmental change, the LCA is discov- tates what maintenance programmers straction.
ered through a sequence of collection steps. probably do informally. Before making Ancestral specifications can be devel-
In functional change, the LCA is found by changes in a program to adapt it to new oped by repeatedly performing an abstrac-
defining an appropriate set ofmaintenance requirements, a programmer informally tion recovery step. Each step consists of
transformations. derives a plausible, higher level "ancestor" * inspecting the specification of interest

specification equivalent to the original pro- (initially the code),
Recovenng abstractions gram as an aid to understanding. * proposing a set of possible abstrac-
TheTMM rests on the supposition that Figure 6 shows the conventional tions for the program specification

the would-be maintainer has both the spec- approach to maintenance. Arcs are portion of interest,
ification and its refinement history. But represented by broken lines to indicate that * choosing the most suitable abstrac-
what happens if he has only the program the refinement history, and thus the origi- tion, and
code? Clearly, this is the scenario that nal abstract specification, is not available. * constructing a specification contain-
maintainers face in practice. TheTMM will What, then, is to guide the maintainer ing the new abstraction.
still work in this situation, but a systematic when going from program P to P'? We Each abstraction proposed implicitly
approach must be used to recapture imple- propose that one should recover the design selects some domains and refinements that
mentation knowledge before theTMM can by a process known as abstraction recov- must produce the existing code when
be applied. ery and then apply TMM. We call this applied to the ancestor containing the pro-

posed abstraction. Abstraction recovery
steps are repeated until a useful LCA is
reached. For example, when modifying a
symbol table routine, the programmer
hunts for code related to symbol insertion
and mentally lumps it into the abstraction
Insert-Symbol. Thus a more abstract ver-
sion of the actual code is formed.

Recovering a specification for program
.- : P causes one to navigate the refinement

DAG as shown in Figure 7. First, program
P's plausible immediate ancestors (broken
circles) are postulated. Selection of an
appropriate ancestor (solid circle) is based

. *. , * * . ~~~~~~~~~~~~~onthe conjecture that the ancestor is on the
? .- *. ? . * * ? . path from P to a suitable LCA. The path

. * ? . * . . to the ancestor is taken, and the process is
repeated until an LCA is reached.
The abstractions chosen should be

appropriate to the purpose of the code.
. _/ J <_. ~~~~~~~~~~~Goodchoices use domains and refine-

ments recovered in earlier steps, perhaps
? . . ? with minor augmentation. In a symbol

? ? table routine, for example, one does not
propose "matrix multiply" as a plausible
abstraction. The maintainer's improve-

6? ?5 ?)?) ment through experience can be used to
enhance the resulting domains.

I

p The selection of an appropriate ances-

tor results from generalization based on the
? specification being considered. The imple-

mentation provides a very limited sample
on which to base a generalization step.

Figure 6. With little or no background in conventional maintenance, what is to guide Recognizing this fact, Boyle suggests that
the change process? The solution is maintenance by abstraction: First do abstraction refinements (their term is transformations)
recovery, then apply TMM. that codify implementation decisions are

34 IEEE SOFTWARE

Least common Implementations
using discarded

abstraction plausible
abstractions

frequently irreversible.6 Furthermore, it is
impossible to determine the refinements
from the program alone. In other words, New
"unrefinements" are possible only with implementation
additional knowledge: We must rely on the J\
maintainer's experience, his knowledge of /\
the application domain, input from the p

original designer, existing documentation,
environmental specifications, etc. In prac-
tice, the junior maintainer must often ask
seniors for additional information about
all of these areas.
Human experience appears vital. The

traditional re-creative tasks of recovering _*
design information include drawing
control-flow, dataflow, and structure
charts; deriving module 1/0 specifications;
identifying key algorithms; and interroga- P
tion. These heuristics can be used to gener-
ate possible abstractions. However, MBA
does not presume any particular heuristic. Figure 7. Abstraction recovery.
When recovering a design, any method can
be used.

Sneed suggests that "automation is the
only true solution to the maintenance
problem.," 13 He argues that tools-static
analyzers for module, program, and system
levels of abstraction-can yield a tenfold
increase in the capacity of a human being
to understand and document. Sneed inti-
mates that the output from these tools pro-
vides the raw material for the real Actual LCA
work-generation of the system specifica- Recovered LCA
tion via abstraction. O.

Quite often the maintainers are not the Implementations
original authors, and much time may have - qo t using chosen
passed since the original implementation. A\ abstractions
Thus maintainers are likely to regenerate
only approximations of the abstractions /
originally used. This mismatch between the IT
maintenance DAG obtained by abstraction . _
recovery and an actual DAG (Figure 8) is
the crux ofthe maintenance problem. Each
successive maintenance effort introduces
cumulative approximation errors, making
the software product more difficult to
understand and modify.
Avoiding approximations and the

amplification of errors through repeated pI
maintenance is difficult. We believe that
errors increase in magnitude when the Actual p,,
recovery process is informal. The errors implementation
generated by the limited sample used for
the abstraction step can be substantially Figure 8. Recovered design versus actual design: the approximation error.

May 1986 35

reduced by performing domain analysis writing the semantic analyzer of a com- after design recovery, maintenance should
prior to design recovery. Domain analysis piler. While this would seem to limit the be easier.
can result in a more adequate, complete, utility of the process to very big programs, The model we have proposed is attrac-
and reusable set of domain abstractions, such programs do exist, and we believe the tive because it provides a unified solution
thus enhancing the power of the abstrac- potential payoff is large. to a variety of problems associated with the
tion recovery paradigm. In some organizations, the recovery of need to implement changes in the function-

Normally, approximation errors are the abstractions for one program may lead ality or performance of a system or its
undesirable. However, when a program has to the discovery ofmany domains that can interfaces with the environment. Once a
a poor design, approximation errors can be be used to recover the designs of other pro- domain network'5 has been defined for an
advantageous. Instead of recovering the grams. This amortizes the recovery costs application area, it is easy to update pro-
specification of the poor design, one can and makes the paradigm potentially eco- grams in that area by adjusting or aug-
commit an intentional approximation nomical even for small programs. menting the refinement libraries,
error that presumably leads toward a spec- The reuse of analysis and design infor- regenerating the applications using the new
ification for a better design-a common mation supports the economy of scale. 14 libraries, and redelivering the results to all
occurrence in practical maintenance work. In the framework ofthe Draco technology, users. This approach allows for an eco-

It is in some sense surprising that main- the analysis and design knowledge is for- nomic and practical configuration control
tenance of code is possible at all. A real malized through networks of domain- and a distribution system for software
maintenance activity seldom requires a specificlanguages. Theselanguagesenable pplications.
complete reimplementation of a program; software developers and maintainers to
normally, only part ofthe code is changed. reusefte dexpensive analysis and design
The refinement DAG shows that any pro- processes and to avoid a costly learning Generating the ideas
gram can have many possible paths to a experience.. Once the recovery of analysis Our problem was to port a moderate-size
particular implementation, indicating that and design information has been per- program coded in Lisp from one machine
many design decisions are commutative formed on an application, new modifica- to another. The fact that the software to be
within regions of the implementation tions and code portings are easier, and the ported (Draco) happened to be the very
path-that is, the order in which refine- resources such actions require are more tool we used to accomplish the port is
ments are applied does not affect the predictable. Since the system is formal, we merely a coincidence.
implementation. Refinements (design deci- can explicitly predict the effects of certain A principal tool in our research on the
sions) not affected can be "floated" kinds of changes. Consider, for example, reuse of software engineering artifacts and
upward within the regions of commutable attempting to reimplement a system using knowledge is a prototype system that
refinements and need not be addressed linked lists structures instead of arrays. implements the Draco paradigm for the
directly in the maintenance effort. Thus, Currently, we cannot even predict whether implementation of software from compo-
TMM, together with maintenance by such reimplementation is possible. The nents. Draco was coded in UCI Lisp run-
abstraction, helps explain why, in practice, reuse of the abstractions recovered using ning on a DEC 2020. We needed to port
maintenance can be performed just on our paradigm would enable us to redefine this system because ofa departmental deci-
code with only knowledge of a few low- the implementation of data accesses to use sion to migrate from DECsystem-20 com-
level design decisions. lists, and then re-derive the implemen- puters running TOPS-20 to DEC VAX

tation. computers running under Berkeley 4.2

Advantages and Boyle6 suggests that concrete programs Unix; consequently, we needed to changelimitato s * have a plethora of irrelevant properties that the execution environment ofour program.limitations make them difficult to modify, extend, Since UCI Lisp is not available on this
Economy of scale and product reusabil- adapt, and transport. Moreover, "... . ab- new configuration, we had to port either

ity are important considerations in soft- stract programs contain only such infor- Draco or UCI Lisp. We quickly elected to
ware engineering. Some could argue that mation as is necessary to show that they port the smaller Draco system. We chose to
a systematic application of the mainten- solve the problem for which they were writ- retarget Draco from UCI Lisp to Franz
ance-by-abstraction approach to small pro- ten. Therefore, modifying, extending, Lisp because the latter was available under
grams is like killing gnats with a adapting and transporting is much easier Unix, stable, and widespread in the
sledgehammer. Recovering the design of a than it is for concrete programs." research community.
large application by our method requires Because one of our industry sponsors
reading and processing the source for the We believe we can benefit from the eco- desired a VAX/VMS/Common Lisp ver-
application program. Since these programs nomic and intellectual advantages in the sion of Draco, we considered Common
are written in conventional computer lan- reuse ofthe analysis and design processes, Lisp as a potential target in addition to
guages, capture of this information may even ifwe have to start by recovering them Franz Lisp. Using Franz Lisp seemed a
require an effort comparable to that of from a concrete implementation. Thus, reasonable stepping-stone on the way to

36 IEEE SOFTWARE

-I-
The Bettmann Archive

creating a Common Lisp version of Draco. cult to refine directly to Franz Lisp. We Some quantitative
The prospect of producing more than one found the semantic gap between I/O con- reults
new implementation of Draco made the cepts in the two dialects to be too large. We es
idea of manual conversion particularly were forced to define a higher level bridg- The original kernel consists of approxi-
repugnant. ing domain to implement these abstrac- mately 2400 lines of UCI Lisp code
The version of Draco that we moved has tions by a virtual machine'6 technique. divided among some 170 functions.

a complex kernel coded in uncommented Some inefficiencies were introduced in the Approximately 280 abstractions were iden-
Lisp, along with some specialized domains final implementation because we did not tified in four domains; refinements were
not coded in Lisp. Since the specialized capture these components at a sufficiently implemented for each. About 45 percent of
domains were stated as high-level specifi- abstract level. One should capture the the abstractions were refined directly (most
cations, they were portable using the Draco abstractions at the highest level possible to of these were generic Lisp); 14 percent of
paradigm. The kernel was the real problem. make reimplementation easier. We expect the abstractions were implemented by
We decided to apply the Draco paradigm the problem with I/O to reappear when we simulation in the target environment. The

to accomplish the port. (This was before retarget for Common Lisp. balance of the abstractions were not com-
the ideas on abstraction recovery had
become clearer.) To minimize the impact of
new code on the porting process, we
imposed the following iron-clad rule:
There would be no changes to the UCI Lisp
source for Draco. Invocation of this rule
forced us to treat the kernel as a specifi- Original UCI Abstraction Refined Franz
cation. Lisp code captured Lisp code
Our first discovery (obvious in retro-

spect) was that Draco used only a subset of K (r _
the UCI Lisp dialect. This enabled us to Collection ste rac
design a limited domain specific to the njt
Draco functionality. Thus, we were able to [rf 1 New refinement
effectively capture the meaning of Draco-
specific UCI Lisp idioms in an abstract r' \
form and discard the concrete syntax. The s

recovery of the meaning from the concrete (DE DRACO- (setq !readp nil)
syntax is an example of reversing the design INITIALIZE ...) (signad2
decisions to implement those abstractions (setq !readp t))
with the particular UCI Lisp coding. The
captured abstraction corresponds to the
LCA described earlier. heck-Fo
The Lisp idioms captured fell into three C cOperator-

classes: IOl s t
* generic Lisp functions and S- New refinement

expressions,
* UCI Lisp idioms (generally related to rt V

environmental interface, such as l/O),
and (COND (cond (progn (x)

* Draco-specific abstractions imple- (READP)... (setq x(readp)
mented as procedures (Initialize, etc.). (setq !readp nil)

To reimplement the Draco kernel in Franz (retirm x))
Lisp, we coded new refinements for the
abstractions captured in the previous step. READP determines if any key signal2 evaluates its argument
(This corresponds to moving down from has been typed when CTRL-C is typed
the LCA to a new implementation in Fig-
ure 4.) A typical example is shown in Fig-
ure 9.
The abstractions for the I/O used by

Draco in UCI Lisp turned out to be diffi- Figure 9. Example of an abstraction.

May 1986 37

plex. The Draco kernel was scanned, and We could probably have moved a much utility of this approach by successfully
the UCI Lisp idioms it contained were con- larger program without much additional porting a real, complex software system.
verted into the abstractions by a UCI Lisp effort; only new semantic primitives would Now that we have a theory supported by
domain parser built especially for this pur- have required our attention. Porting differ- positive application experience, tools could
pose. This constituted the abstraction ent UCI Lisp programs would similarly be developed to aid this approach and sig-
recovery step(s). Since the parser converted require intervention only for new seman- nificantly enhance the practice of software
each part of the original specification to a tic primitives. We expect that much of the maintenance.
different form, we effectively reversed a human effort already expended can be
very large number of implementation deci- reapplied if we decide to proceed with a
sions. The result of parsing was the LCA Common Lisp implementation. Addition-
we desired. Once the original LCA was ally, should some bug be discovered in the
captured, we used Draco to reimplement Draco kernel, we need only modify the ker-
the abstractions in Franz Lisp. The entire nel and regenerate both a Franz Lisp and
2400 lines of the Draco kernel were auto- a Common Lisp system automatically.
matically converted by the process, using Had the original program been con-
19 hours of DEC 20 CPU time. Lines of structed using the Draco paradigm, the
source code expanded in number by about domain recovery steps would have been
10 percent. unnecessary. Instead, we could have con- Acknowledgments
About eight man-months were centrated on augmenting existing domains We gratefully acknowledge the support of the

expended, and about half of that time was and choosing a different path through the National Science Foundation (MCS-83 -04439)
as well as joint sponsorship of the University ofspent recovering the needed abstractions refinement DAG. California and the Aluminum Company of

used in the UCI Lisp implementation and Currently, we cannot store design histo- America under the Micro program.
reimplementing them in the Franz Lisp ries and have thus ended up in the peculiar
environment. The other halfwas spent test- position ofhaving our Draco system speci-
ing the ported version, adjusting the com- fied in UCI Lisp, which because of the
ponent libraries, and generating new absence of DEC-20's, is no longer executa- Ref
versions for further testing. To put these ble at our site. A mature tool would have erences
figures in perspective, we note that the allowed us to store the LCA as our speci- 1. G. Arango et al., A Formal Model of
effort included not only the recovery ofthe fication and throw the UCI Lisp version Transformation-Based Software Main-

theFrnzLip impemen- tenance, Advanced Software Engineeringabstractions but also the definition of the away. However, the Franz Lisp implemen- Project Technical Report RTM-39/86, Uni-
domains involved and several false starts at tation runs beautifully, even to the point of versity of California, Irvine, 1986.
conceptualizing the approach and the exactly duplicating known bugs in the UCI 2. J. M. Neighbors, Software Constructions
maintenance model. As is normal with Lisp version of Draco. Usi Co nents,Tchnical Report TR- 60,
prototypes, procedural difficulties and the University of California, Irvine, 1980.
immaturity of the tools themselves compli- 3. J. M. Neighbors, "The Draco Approach to
cated the task. We believe now that if we Constructing Software from Reusable Com-
had had a formal model of maintenance, he model of the maintenance ponents," IEEE Trans. Software Eng., Vol.
as defined in this article and elsewhere, I process we have described requires SE-10, No. 5, Sept. 1984, pp. 564-573.
and more mature tools, the time to port T (I) program specifications at 4. J. M. Neighbors, J. Leite, and G. Arango,U.. (1progrm specficatins at Draco 1.3 Users Manual, RTPOO3.3, Univer-would have dropped by a factor of approx- some abstract level and (2) the set ofdesign sity of California, Irvine, June 1984.
imately four. decisions that were made to implement the 5. S. Hague and B. Ford, "Portability-
The porting itself went easily in spite of program. The TMM can be formalized, Prediction and Correction," Software:

our lack of familiarity with the actual and effective tools to aid software main- Practice andExperience, Vol. 6, No. 1, John
design of the ported code. Even now we do tenance can then be constructed for pro- Wiley & Sons, New York, 1976, pp. 61-69.
not have a deep understanding of the grams built of components. The scheme 6. J. M. Boyle and M. N. Muralidharan, "Pro-

gram Reusability Through Program Trans-ported code; complex meta-pattern called "maintenance by abstraction" is formation," IEEE Trans. Software Eng.,
matchers in the Draco kernel were auto- intended to help those maintainers unlucky Vol. SE-10, No. 5, Sept. 1984, pp. 574-588.
matically converted without our looking at enough to possess only concrete code. 7. M. Shaw, "Abstraction Techniques in Mod-
that code at all. Most of the bugs discov- MBA suggests that a human with appro- ern Programming Languages," IEEE Soft-
ered while testing the Franz Lisp version priate tools can perform abstraction recov- ware, Vol. 1, No. 4, Oct. 1984, pp. 10-26.
were easy to find, relatively easy to fix, and ery to (partially) convert such programs 8. A.S. Tanenbaumr P. Kling, and W. Bohm,
had to be discovered/fixed only once, as into their constituent components, and "Guidelines for oftware Portability, I

Soft-ware: Practice and Experience, Vol. 8, No.
the fixes were automatically propagated by then changes can be made to the resulting 6, John Wiley & Sons, New York, 1978, pp.
the refinement process. design using the TMM. We have shown the 681-698.

38 IEEE SOFTWARE

9. P.C. Poole and W. M. Waite, "Portability
and Adaptability," in Advanced Course on
Software Engineering, F.L. Bauer, ed.,
Springer-Verlag, Berlin, 1973.

10. B. W. Boehm, Software Engineering Eco-
nomics, Prentice-Hall, Englewood Cliffs,
N.J., 1981, pp. 54-55.

11. A. Partsch and R. Steinbruggen, "Program
Transformation Systems," Computing Sur-
veys, Vol. 15, No. 3, Sept. 1983, pp. 199-236.

12. N. Wirth, "Program Development by Step- Ira D. Baxter is working on a PhD in computer Christopher W. Pidgeon is a PhD student in the2212.27 N.Wirtscience at the University of California, Irvine, information and computer science program at

wise Refinement," Comm. ACM, Vol. 114, where he received BS and MS degrees in 1973 the University of California, Irvine. He has been
No. 4, Apr. 1971, pp. 221-227. and 1983, respectively. A member of the an associate professor of computer information

13. H. M. Sneed, "Software Renewal: A Case Advanced Software Engineering Project, his systems at California State Polytechnic Univer-
Study," IEEE Software, Vol. 1, No. 3, July research interests include machine learning, sity since 1979. Within the Advanced Software
1984, pp. 56-63. portable software, operating systems, compilers, Engineering Project, his current research focuses

14. P. Freeman, "Reusable Software Engineer- machine architectures, and the application ofAl on the decision processes in software design. He
ing: Concepts and Research Directions," principles to software and hardware engineering. has coauthored a textbook, Structured Analysis
Proc. ITT Workshop Reusability in Pro- He has worked extensively in industry, design- Method&
gramming, Stanford, Conn., 1983, pp. 2-16. ing/implementing two complete multiuser oper- Pidgeon earned a BS in business administra-

15. G. Arango and P. Freeman, "Modeling ating systems plus tools, as well as a 16-bit virtual tion and an MBA from California State Poly-
Knowledge for Software Development," memory computer. technic University, Pomona, and holds an MS
Proc. Third Int'I Workshop Software Specifi- Baxter currently consults for industry through in computer science from the University of
cation and Design, IEEE-CS Press, Los his company, Software Dynamics, in Anaheim, California, Irvine. He is a member ofACM and
Alamitos, Calif., 1985, pp. 63-66. California. He is a member of IEEE, IEEE-CS, the IEEE Computer Society.

16. R. A. Meyer and L. H. Seawright, "A Vir- ACM, and the American Association for Arti-
tual Machine Time-Sharing System," IBM ficial Intelligence.
Systems J., Vol. 9, No. 3, 1970, pp. 199-218.

Keeping Professionals in Touch with
What's Happening in Computing
Systems and Software Engineering

THE JOURNAL OF
SYSTEMS AND
SOFTWARE
Editor-in-Chief: Robert Glass, Seattle
University
THE JOURNAL OF SYSTEMS AND
SOFTWARE is an interdisciplinary
journal focusing on managerial and
technical problems in the computing
systems domain. Innovative in scope
and editorial direction, this timely
journal applies theory developed
from both research and real-world

Guillermo Arango is a PhD student in computer Peter Freeman has been a faculty member at the experience to actual computer
science at the University of California, Irvine. University of California, Irvine, since 1971. systems and software life-cycle
Previously, he was on the faculty of the Univer- From 1969 to 1971, he did postdoctoral work at situations. Issues contain important
sity of Belgrano, Argentina. He has also been a Carnegie-Mellon University. He has also worked papers written by experts from aca-
systems developer and a consultant in real-time with the United Nations in Hungary and the demia, government, and industry -
software. As a member of the Advanced Soft- Philippines. He currently leads a group develop- wherever advances are made. Writ-
ware Engineering Project, his focus is on for- ing advanced concepts and tools for application ten for researchers and managers,
malizing the analysis and representation of in the early stages of complex system develop- THE JOURNAL OF SYSTEMS AND
domain knowledge to support software systems ment. In addition, he serves on the Alcoa Science SOFTWARE is a major source of
development and evolution. and Technology Advisory Council, is a consult- reports on advances in this rapidly
Arango holds an MS in computer science and ing editor for McGraw-Hill, and is a member of changing area.

a BS in mathematics. He is a member of the the academic review board for the IBM Cor- ISSN 0164-1212
IEEE Computer Society, ACM, and the Ameri- porate Technical Institutes. 1986 Volume 6(4 issues) $95.00
can Association for Artificial Intelligence. Freeman graduated from Rice University in Send for Your Free Sample Issue

1963 with a bachelors degree in physics, from the Todayl
University of Texas at Austin in 1965 with a To order call (212) 916-1010orwrite:

The authors can be contacted at the Dept. of masters degree in mathematics, and from Elsevier Science Publishing Company,
Information and Computer Science, University Carnegie-Mellon U,ilversity in 1970 with a PhD Inc., P0. Box 1663, Grand Central
of California, Irvine, Irvine, CA 92717. in computer science. Station, New York, NY 10163.

ELSEVIER 3/85 NH179
May 1986

Reader Service Number 5

