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Abstract

Many software systems are developed with configurable
functionality, and for multiple hardware platforms and
operating systems. This can lead to thousands of possible
configurations, requiring each configuration-dependent
programming entity or variable to have different types.
Such configuration-dependent variables are often declared
inside preprocessor conditionals (e.g., C language).

Preprocessor-conditioned declarations may be a source of
problems. Commonly used configurations are type-checked
by repeated compilation. Rarely used configurations are
unlikely to be recently type checked, and in such
configurations a variable may have a type not compatible
to its use or it may contains uses of variables never

defined.

This paper proposes an approach to identify all possible
types each variable declared in a software system can
assume, and under which conditions. Inconsistent variable
usages can then be detected for all possible configurations.
Impacts of preprocessor-conditioned declaration in 17
different open source software systems are also reported.

Keywords: Preprocessor code analysis, type-checking,
symbol table, multi-platform software.

1. Introduction

Software systems are often developed with configurable
capabilities, and to run under several different hardware
and software platforms. Preprocessor conditionals are
often used to configure the software accordingly. Setting
the configuration variables and compiling gives a single
configured instance of the program, and under ideal
circumstances, each configurer can do just that and obtain a
working program for his configuration.

However, full configurability is difficult to achieve in
practice, and it can be impractical for the programmer to

verify that every configuration works correctly. Knowing
that every possible configuration is type-correct is a
necessary first step to ensure that every configuration
actually works. Testing a particular configuration for type-
correctness is easily done if one has a compiler, by simply
configuring and compiling. This approach is not effective
once the number of configurations becomes significant.
What we would like ideally is a tool to verify that a
program is type-correct in all possible configurations.

This paper reports on initial steps towards creating such a
tool, by defining an approach that can capture what types
are declared under what configurations, and exploring how
these conditional types can be used to detect configuration-
instance type faults.

The paper is organized as follows. Section 2 explains the
motivations for this work. The functionality of the
environment used to develop the tool, DMS, are
summarized in Section 3, while Section 4 describes the
architecture of the proposed tool. Data on the impact of
preprocessor conditionals on different software systems are
reported in Section 5. Section 6 summarizes related work,
while conclusion and work-in-progress are presented in
Section 7.

2. Preprocessor-Conditioned types

In this section we explain, using some examples, the
problems concerning the use of preprocessor conditioned
variables. Figure 1 shows an example of preprocessor-
conditioned variable declaration, and its use inside an
expression.

Depending on the configuration, the type of the variable
buffer may be:

1. char: if the expression (defined (ALPHA) ||
defined (ATARI)) && defined (pyr) is true,



#if defined(ALPHA) || defined (ATARI)
#if defined (pyr)

char * buffer;

#endif

#elif defined(i386)

int buffer;

#endif;

*iuffer = 2:1

Figure 1. Example of a preprocessor-
conditioned declaration

2. int: if the expression /(defined (ALPHA) ||
defined (ATARI)) && defined (i386) is true;

3. Undefined: in all other cases.
This may lead to two categories of problems:

e Inconsistent use: e.g, declared as int but used as
pointer;

e Used but not declared: The system could be
compiled in a configuration where the variable
buffer isnever defined but is actually used at a
certain point, since the use has accidentally not
been excluded by preprocessor condition similar
to the one excluding the declaration.

For particular configurations, these problems are detected
at compilation time. However, this solution is infeasible
for systems in which the number of possible configurations
is huge, and it is simply impractical to compile every
configuration before release to customers. For example,
the Linux 2.4.0 Kernel contains more than 7000 files, and
runs on 10 different processors [1]. It has 400 preprocessor
switches, each of which may assume three different values

(Y to include the code into the compiled kernel; N, or
commented switch, to exclude the code, or M to produce a
dynamically loadable module) drive the actual kernel
configuration. This enables some 10*400° possible
different configurations (not all possible combinations of
switches make sense, e.g., it is unlikely for a machine
having several sound boards installed), which should be
considered when testing the system.

Furthermore, there may be some problems that are
discovered only during execution, when the affected
portion of code is reached.

Most conditionals are inserted to compile the software
system under different possible configuration. However,
some are not and can effectively be ignored for type
analysis. A typical (and, often, the most relevant) example
is the preprocessor code used to avoid circular inclusion:

#ifndef MYFILE_H
#define MYFILE_H

#endif

Heuristics (often pattern-matching oriented) are adopted to
avoid considering these preprocessor directives as
conditions on variables.

3. DMS

The Design Maintenance System (DMS) [2] is a
reengineering vision and toolkit that enables the analysis,
translation, and/or reverse engineering of software systems.
The DMS vision encompasses software development from
initial synthesis, through subsequent enhancement and on
to maintenance. The DMS vision incorporates several key
ideas:
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e Design centric. The DMS vision holds that the
production and maintenance of the design is a key
aspect in software maintenance and evolution.

e Semantics based. In the DMS view there is a
correspondence between the designer's analytical
efforts and the semantic capabilities provided by
DMS.

e Multilingual. DMS provides facilities for a variety
of languages. Each formal language is referred as
a domain that includes a description of language's
syntax, and as much (or as little) of the language's
semantics as is necessary for the task at hand;

e Industrial Scale: DMS does not limit the size of
the application that can be manipulated.

The DMS toolkit has been used for a number of
commercially interesting tasks [3, 4], such as generation of
domain tools, automated detection of duplicate code
clones, code generation of factory controller programs
from factory process specifications, implementation of
code test coverage and so on.

A number of reengineering technologies are integrated into
DMS. The main components of DMS Reengineering
Toolkit, depicted in Figure 2, are:

e Lexer;

e Parser;

e  Attribute evaluator;

e  PrettyPrinter;

e Rule Applier; and

e  API to manage AST and Symbol Table.

In particular, DMS provides an attribute grammar
definition system arbitrary analyses. The DMS Attribute
Grammar domain enables a domain engineer to specify
attribute computations over grammar productions and
terminals to compute values over syntax trees (i.e., parse
trees). Such computations are commonly used to create
symbol tables, resolve names, i.e. map name uses to name
definitions, perform type checking and inferencing, as well
as to perform other analyses to answer questions about
domain instances often with the goal to manipulate domain
instances. The main tool in the domain is the
AttributeEvaluatorGenerator which, given an attribute
grammar, produces a parallel program that performs the
specified attribute computation.

DMS also provides a generalized symbol table
management mechanism, capable of capturing a wide
variety of scoping rules and type information. For fast
access to information related to identifiers in a source
program or specification it is necessary to record these
identifiers together with collected information about

various of their attributes, such as their scope of validity
and their types. This information can be used to check the
well formedness of the program, e.g. its type correctness,
as well as during transformation of the source. The symbol
table data type provides an easy way to record such
identifiers and store or retrieve information associated to
them. It supports the definition of hierarchical maps from
identifiers to values together with visibility restrictions for
those identifiers. An example of symbol table for a fib
program is depicted in Figure 3.

Finally, DMS also provides a pattern and rule specification
language, allowing the specification of conditional source-
to-source rewrite rules on trees. The DMS rule
specification language provides basic primitives to build
conditions, patterns, rules, and rule sets using the surface
syntax defined by string based domains as well as tree
based compositions.

/* Fib.java */

A ibl
public class NumberTheory: class frf):ss' ¢
NumberTheory { x: int (scope 2) scope 1
int x;
int Fib( int x)

{ if (x<1)
return 1; Accessible
LEE Fib: int -> int from
return scope 0
Fib(x-1)+
Fib(x-2);
o}
x: int (scope 0)
(@ (b)

Figure 3. Example of DMS symbol table

The patterns and rules can have conditionals associated to
them, describing restrictions on when a pattern actually
matches a syntax tree or a rule is actually applicable on a
syntax tree.

4. Architecture of Type-Checking tool

The architecture of the proposed tool is shown in Figure 4.
Once the source code of the system to analyze has been
parsed and the Abstract Syntax Tree (AST) produced, the
Conditional Name Resolver builds an Enhanced Symbol
Table, in which the type of each symbol is conditioned by
an expression (see details in Section 4.1). Type-checking
on the expressions contained in the AST of the software
system is then performed for all the possible
configurations.

One of the main advantages of the proposed tool is that,
while with a traditional compiler can only compile and
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check the software system in only one possible
configuration at a time, this tool can type-check each
expression for all possible combination of types variables
involved in the expression. Finally a report log, containing
the list of all possible inconsistencies, is produced.

4.1. Building the Enhanced Symbol Table

As described in Section 3, DMS builds the symbol table of
a source code file using an attribute evaluator. However,
the standard DMS Name Resolver for C does not take care
of the preprocessor directives, unconditionally inserting
symbols into the symbol table, or leaving to a preprocessor
the task of expanding directives.

Symbol | Scope | Type Conditional
Expression

buffer 0 char* | (defined (ALPHA) ||
defined(ATARI)) && defined (pyr)

buffer 0 int | !(defined(ALPHA) ||
defined(ATARI)) && defined
(i386)

X 1 float | True

k 2 int | defined(SPARC)

Table 1. An example of enhanced symbol table

What we aim to do is to associate, to each triple symbol-
scope-type, a Boolean expression like those in the
examples of Section 2. Moreover, it is worth noting that, in
cases like Figure 1, the symbol table can contain several
instances of the same couple symbol-scope, where the type

varies with the conditioning expression (see Table 1). For a
declaration outside the preprocessor conditionals, like
variable x in the table, the Conditional Expression field is,
obviously, set to true.

Starting from the original DMS Name Resolver, we added a
new attribute expr to the attribute evaluator. This attribute
brings the Boolean condition from the conditional directive
to the variable declaration. More Boolean expressions are
composed in presence of nested preprocessor conditionals.
At the root node of the AST the attribute expr is set to true
(i.e., if a symbol is declared outside a preprocessor
conditional, it always assumes the associated type, as in the
original DMS symbol table). Appendix A shows how the
new attribute flows through the grammar terms.
A preprocessor-conditioned code block can be described
by one of the following grammar rules:

1. block = if_group block ‘#endif’

2. block = if_group block

#else’ block ‘#endif’

3. block = if_group block
elif_group block
‘#endif’

4. block = if_group block
elif_group block
‘#else’ block
‘#endif’

where an if’ group may be a directive:
5. if_group = #if expr
6. if_group = #ifdef IDENTIFIER

7. if_group = #ifndef IDENTIFIER



Let us consider now, as highlighted in Appendix A, the
second case (for the other rules the behavior is similar).

The if group passes the symbolic Boolean expression
(expr) to the conditioned blocks, i.e., to both block
grammar symbols in the right-side of the grammar rule (the
expression is negated when passed to the second block,
being the else branch of the condition).

The symbolic expression coming from the if’ group is then
combined with the expression coming form the outer block
(i.e., from the left side of the grammar rule) by an AND
operator, building a conditional expression for declarations
inside nested preprocessor conditionals. Finally, the
conditional expression is then simplified algebraically
using rewrites. Further details about how expressions are
composed and simplified are shown in Section 4.2.

public pattern
not_expression(el:simp_constant_expression
) : simp_constant_expression =

"1 (\el\:simp_expression)".

public pattern

and_expressions (el:simp_constant_expressio
n, e2:simp_constant_expression) :
simp_logical_and_expression

= "(\el\:simp_expression) &&
(\e2\ :simn exnression)".

Figure 5. Transformation rules for composing
expressions

Once the attribute expr reaches a symbol declaration, the
insertion of the symbol in the symbol table follows the
schema explained by the pseudo-code shown in Appendix

A: the function AddCondSymbeol inserts all symbol
information (name, scope, type), along with the conditional
expression in the symbol table. If the declaration is not
inside a preprocessor conditional, then the conditional
expression assumes the Boolean value true (e.g., variable x
in Table 1).

It is worth noting that, if the same symbol is already
present in the same scope, then the function
AddCondSymbol simply adds another instance of the
couple type-conditional expression (e.g., the variable
buffer in Table 1).

4.2, Composing and simplifying expressions

The DMS Rule Specification Language enables the
specification of patterns and rules to compose and
transform ASTs.

For composing expressions, two transformation rules were
used:

1. To negate an expression, before passing it to the
else branch of a conditional, and

2. To compose nested conditions using the Boolean
AND operator.

The DMS transformation rules are shown in Figure 5.

The first rule defines a pattern, named not expression. The
expression in parentheses indicates that the AST node to be
replaced must be of type simp constant expression; the
type of the instantiated AST node is indicated after the
colon. The expression in the right side indicates that the
matched pattern (el) will be transformed to /(el). A new
AST node will be instantiated, whose type
(simp_constant expression) is indicated in the left side of

private rule eliminate_parentheses_27 (e:simp_expression) :

simp_expression->simp_expression
="(\e)"->"\e\:simp_expression".

private rule simplify not_not(e:simp_unary expression) :
simp_unary expression->simp_unary_expression

="ll\e" -> e.

private rule

simplify or_repetition_2(el:simp_logical_and_expression,e2:simp_logical_and_expression) :
simp_logical_or_expression->simp_logical_or_expression

="\el || \e2 || \e2"->"\el || \e2".

private rule simplify or_and_la(el:simp_logical_and expression,
e2:simp_logical_and_expression) :
simp_logical_or_expression->simp_unary_expression
=m"\el || \el && \e2\:simp_inclusive_or_expression"->"\el\:simp_unary expression".l

Figure 6. Examples of rules



the expression after the colon. Similarly, the second rule
composes two AST nodes creating a
simp_logical and_expression node.

A further task performed by transformation rules is to
simplify conditional expressions. Suppose we have a piece
of code written as follows:

#if defined(i386)

#if defined(i386) || defined (intel)
int x;

#endif

#endif

The condition on the variable x should ideally be:

#if defined(i386)

Simplifications are performed by a set of transformation
rules, applying well-known properties of the Boolean
algebra, and pruning superfluous parentheses. Some
examples of rules are reported in Figure 6. Further details
can be found in [3]. It is worth noting that these rules work
properly given that associative and commutative properties
have been properly defined in the grammar for all Boolean
operators.

4.3. Type-checking

In this subsection we will consider how we could extend
our approach with a type-checking mechanism.

A mechanism for type-checking is similar to the
mechanism for evaluation. In evaluation, an expression is
processed to arrive at a value, while an expression is
processed to determine a type for type-checking.

Indeed, a type-checker verifies that the type of a construct
matches that expected by its context. For example, a type-
checker verifies that a de-referencing operator is applied
only to a pointer, or that indexing is done only on an array.

Type-checking is typically achieved by providing a
mechanism to define type-constraints indicating the type of
a variable [5].

The design and the implementation of a type-checker for a
specific language is based on information about the
syntactic constructs in the language, the notion of the types,
and the rules for assigning types to language constructs. A
collection of rules, for assigning type expressions to the
various part of a program, is required.

The type of a language construct is referred in literature as
“type expression”. A type expression can be either a basic
type or formed by applying a type constructor. The set of
basic types and constructors depends on the specific
language. For the C language all this information can be
extracted from the C reference manual [6].

A convenient way to represent and evaluate a type
expression is to use a graph. It is possible to construct a
tree for a type expression, with inner nodes for type
constructors and leaves for basic type, type name, and type
variables.

In our tool the traditional approach to implement a type-
checker will be extended to consider also preprocessor
conditioned variables declarations and their use inside
expressions. We aim to address also particular situations in
which variables are never defined in some configurations,
but also used in the program construct because they
erroneously have not been considered by preprocessor
condition, or cases in which variables are declared with a
specific type for specific configuration but used as a
different type (i.e., a language construct has been
erroneously reached).

4.4. Examples

In order to better understand what kind of faults we
propose to discover, this section reports some examples of
failed type-checking.
Consider, for example, the following C code:
{ #if ARRAY
char **x;
#else
char *x;

#endif

x="Hello world!”;

}

It is clear that, in the configuration ARRAY, x is a pointer-
to-pointer to char, therefore the assignment will result as
faulty.

Another example is the following:

{ #if M
byte *address;

#endif

#if N
char *address;

#endif

}

In this case the printf statement works correctly only in
the M configuration.



5. TImpact of preprocessor conditionals

In this section the impact of preprocessor conditionals on
variable declaration is analyzed and discussed,
demonstrating the potential usefulness of the approach.
Seventeen open source software systems were analyzed,
most of which also studied in [7]. We added two systems,
mozilla and the Linux kernel 2.4.18 for which,
in our opinion, preprocessor conditionals play a
fundamental role. We found that most of the configuration-
dependent declarations were contained in the header files,
and so we concentrated our analysis there. As discussed in
Section 2, we avoided considering as conditions
preprocessor directives used to prevent circular inclusion.

Figure 7 reports the percentage of preprocessor conditioned
declaration in the software systems analyzed. In most
cases, the percentage is not negligible, and is around 20%
(i.e., m4, gzip, gnuplot, ghostview, gawk, emacs,
bison). There are cases, which should be analyzed in
more closely where the percentage is close to 40% (e.g.,
perl, mozilla, gs, gnuplot and the Linux
Kernel),

zsh
rcs
perl
mozilla
mé4
Linux
gzip
gs
gnuplot
gw
gce
gawk
emacs
cvs
bison
bec
bash

0% 10% 20% 30% 40% 50%

Figure 7 — Percentage of preprocessor-
conditioned declarations
High percentages for mozilla (some examples are
shown in Figure 9) are due to factors such as:
e Handling platform-dependent code; and

e Verifying if the configuration under which the
system will be compiled includes certain libraries
and components.

As highlighted in Figure 9, complex and nested conditions
should be handled: this enforces the need for the
expression simplifier explained in Section 4.2.

Similarly, analyzing perl, we experienced that
preprocessor conditionals are targeted to compile the
interpreter on different platforms and to check if some
perl add-ons and libraries are included in the
configuration to be built.

ipc

fs

arch
net
drivers
scripts
include
Total

0% 10% 20% 30% 40% 50%

Figure 8 — Preprocessor-conditioned
declarations in the Linux Kernel subsystems

A more focused analysis was performed on the Linux
Kernel. The objective was to analyze the impact of
preprocessor conditioned declarations on the different
Kernel subsystems.

To perform an analysis on different subsystems, we
followed the first-level depth subdirectory decomposition
also used for clone-detection in [1]. In other words, we
analyzed separately general header files contained in the
include directory, and then those of the six major
subsystems (ipc, fs, arch, net, drivers,
scripts). Results are reported in Figure 8, together with
the overall results (the Total bar) from Figure 7.

The percentage in the include directory was significant, due
to the fact that most of the Linux Kernel code is customized

#ifdef XP WIN

#ifdef XP_WIN16

#if defined (XP_WIN) || defined (XP_0S2)
#ifdef XP_MAC

#ifdef XP_UNIX

#if !defined(XP_RANDOM) ||
!defined (XP_SRANDOM)

#if defined(UNIXWARE) | |
defined (_INCLUDE_HPUX_ SOURCE) ||
(defined(___sun) && defined(__svrd_ ))
|| defined(SNI) || defined(NCR)

Figure 9. preprocessor conditionals in mozilla
code



during pre-compiling configuration (i.e., establishing the
architecture, what drivers to include, etc.). As expected,
hardware-specific code (drivers and arch subsystems)
exhibit a considerable percentage, especially more
independent subsystems, such as net, fs and ipc.

6. Related work

Programmers tend to consider it necessary to port C
software from one configuration to another, as C runs on
“practically everything”.

When differences among systems cause difficulties, the
usual first solution adopted by programmers is to write two
different versions of the code, one per system, and use
#ifdef to choose the appropriate one. However, the
large use of #1ifdef to attempt at portability is usually a
source of several problems. The result is usually an
unreadable, and difficult to maintain software system [8].

Ernst et al. [7] presented the first empirical study of the use
of the C macro preprocessor. They analyzed 26 packages,
to determine the practical use of preprocessor directives.
The authors also proposed a taxonomy of various aspects
of preprocessor use. This paper reported data regarding the
prevalence of preprocessor directives, macro body
categorizations, use of the C preprocessor to achieve
features impossible in the underlying language,
inconsistencies and errors in macro definitions and uses,
and dependences of code upon macros.

Hu et al. [9] coped with conditional compilation problems.
They presented an approach based on symbolic execution
of preprocessing directives. Their goal was to find the
simplest sufficient condition to reach/compile a line of
code containing a preprocessor directive, and the full
condition to reach/compile it. Experiments have been
conducted on Linux Kernel, using a tool that automates the
approach presented.

Livadas and Small [10] addressed problems concerning
source code containing preprocessor constructs, such as
included files, conditional compilation, and macros. The
authors proposed a mapping from token in the preprocessor
output to the source file(s), and discussed the use of these
correspondences,  through an  internal  program
representation, for maintenance purpose jointly with
techniques including program slicing, ripple analysis, and
dicing.

Baxter and Mehlich [3] explained disadvantages in having
preprocessor conditionals inside code when the presence of
configuration dependent code loses its utility, and proposed
a method for its removal. A method to simplify
preprocessor Boolean expressions was adopted to easily
evaluate expressions.

Type inferencing is also present in other code-analysis
tools. For example, TXL [11] developers implemented a
type inferencing and checking prototype as an attribute
grammar,

7. Conclusions

This paper presented an approach and the architecture of a
tool devoted to the automatic detection of faults caused by
wrong use of configuration-dependent variables.

This was obtained building an enhanced symbol table, in
which the type of a variable depends on a Boolean
expression obtained composing and then simplifying
preprocessor conditionals dominating the variable itself.

This will allow a more effective type-checking with respect
to a traditional compiler, since the latter needs to compile
the system for each individual configuration to be tested,
while the former can automatically check expressions
present in the code for all the possible configurations.

Possible impact of the tool was analyzed computing the
percentage of preprocessor conditioned variables present
in 17 different software systems, and analyzing the purpose
of these conditionals.

Work in progress is devoted to complete the tool (at the
moment only the enhanced symbol table builder is
implemented), and to apply it on some open source
systems, like those preliminarilily analyzed in Section 5.
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APPENDIX - A
Graphical representation of the attribute flows through the grammar terms.
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