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Abstract 

Preprocessors with conditionals are often used as 
software configuration management tools, with 
preprocessor variables naming configuration aspects. The 
preprocessor conditionals found in large systems often 
have complex enabling Boolean equations and nesting.  
Over long periods, some configuration aspects lose all 
utility.  Removal of all traces of a configuration variable 
and code dependent on that aspect becomes a significant 
task if performed manually. 

An industrial-strength transformation system can 
remove such configuration aspects in a much shorter 
period of time, by symbolically simplifying away the 
configuration aspect.  This paper sketches the problem, and 
the required transforms, and discusses a case study 
involving over a million lines of source code. 

1 Removing Preprocessor Conditionals 

Preprocessor directives are ubiquitous in a large 
software system, primarily existing to help configure 
aspects of the system for the variety of environments in 
which it runs to amortize its development cost.  Typically 
these directives select language dialect, operating system or 
libraries (or versions thereof), application features, 
performance features, CPU type, word size, etc. 

Different concerns are often (but not always) 
independent; the operating system chosen is usually 
independent of application features.  We call each of these 
semi-separate concerns a configuration aspect.  Such 
aspects are usually enabled or disabled in a binary fashion. 

The success of a software system shows in its longevity.  
That longevity ensures that system configurations that were 
once valuable (e.g., VAXen) eventually become useless.  
Maintaining useless configurations in a large system 
increases its cost, as maintainers have to continually work 
around, understand, or even fix code for features they 
suspect, but are not sure, are no longer useful. Once a 
configuration aspect is declared dead, it would be ideal to 
remove everything from a source system that is related to 
that aspect. 

Person-weeks of effort are required to do this manually 
for systems of scale (e.g., millions of source lines with 
thousands of files), and the work is unrewarding for the 
assigned individual.   

Some kind of automation is needed. This should be 
done in a way that preserves as much of the source code 
structure (other preprocessor directives, indentation, 
spacing, number formats, comments, etc.) as possible, to 
prevent objections from programmers that “own” the code. 

Ad hoc automated tools for this problem exist, usually 
based on string processing.  These almost work, but are not 
good solutions because they do not really understand the 
full language syntax.  Consequently, they can make errors 
at a significant rate on large systems, requiring the very 
manual intervention they were designed to avoid. 

This work uses DMS, an industrial-strength 
transformation system. (DMS is intended to eventually 
support design maintenance [1,2,3], but is presently used 
for reengineering applications [4]).  DMS accomplishes the 
desired effect by implementing partial evaluation of 
conditional preprocessor directives as a set of rewrite rules.  
Such transformation systems do understand the language 
syntax, and so can avoid the problems of ad hoc solutions. 
The rewrites implement what amounts to a Boolean 
expression simplifier and dead-branch elimination from 
if-then-else constructs.  The value of DMS is its ability 
to parse difficult languages such as C and C++ in the 
presence of preprocessor directives, and the 
straightforwardness of the rewrites for accomplishing the 
desired effect. 

Section 2 discusses preprocessors.  Section 3 discusses 
the problems in preprocessor directive removal.  Section 4 
discusses industrial-scale transformation systems.  Section 
5 shows how source-to-source transformations are encoded 
and operate. Section 6 shows how we handle parsing 
preprocessor directives.  Section 7 discusses practical 
issues when parsing preprocessor directives.  Section 8 
describes how partial evaluation can be used to simplify 
constructs.  Section 9 shows the source-to-source 
transformation rules needed to remove the dead 
preprocessor directives.  Section 10 shows the results, and 
Section 11 discusses future work. 
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#ifndef Unix 
#define Unix 1 
#endif 

… 
char filename[132]; 
#if SDOS 
short int result[256]; 
int status; 
#endif 

… 
#if (SDOS|Unix)&!DEMOS 
  append_to(&filename,&extension); 
#endif 
#if SDOS 
   syscall(OS_openfile,&filename, 
           OS_readonly,&status,&result,); 
   if (status!=OS_no_error) 
      syscall(OS_exit_with_error, 
              &status,OS_dummy, 
              &status,&result); 
#elsif Unix 
   if (errno=fopen(&filename,readmode)) 
      { exit(errno); } 
#else // DEMOS 

… 
#endif 
 

Figure 1: Source code with preprocessor directives 

2 Preprocessors 

Many programming language environments provide 
“preprocessor” facilities, allowing considerable automated 
“editing” of a source file “before” it is seen by the language 
processor.  Preprocessors with conditionals are often used 
as compile-time software configuration management tools, 
with preprocessor “variables” naming configuration 
aspects.  These aspects can be Boolean (enabling or 
disabling a feature) or parametric (e.g. a integer specifying 
a buffersize), usually with a parameter value that by 
convention disables the feature (e.g., buffersize == 
0). 

Figure 1 shows typical configured source code.  The 
preprocessor variables Unix, DEMOS and SDOS are aspects 
controlling which operating system calls are made.  By 
configuration, we mean all source code defining or 
dependent on an aspect; for SDOS, this is the conditional 
declaration of a result buffer, the filename extension-
appending code, and the “then” branch of the file opening 
logic.  Note that configurations often overlap because of 
shared logic, such as appending the extension. 

The configuration space managed can be enormous. N 
Boolean configuration variables can provide for up to 2N 
possibly different instantiated configuration; the Linux 
operating system has roughly 1000 configuration variables  
[7].  The preprocessor conditionals found in large systems 

often have complex enabling Boolean equations over these 
aspects, which encode configuration dependencies, and 
complex nesting to allow code sharing between 
configurations. 

The term “preprocessor” comes from the fact that these 
facilities have traditionally been grafted onto languages as 
an afterthought, and consequently implemented as a 
“preprocessing” pass to perform the “editing”, and 
occurring before the compilation step (most Unix systems 
and many “C” compilers).  For efficiency reasons, 
preprocessing is often now integrated into the compile step, 
but the name remains. 

The preprocessor provides, via special “preprocessor 
directives” easily found in the program text, several types 
of facilities that change the apparent source file: 

• importing fixed blocks of text (C #include 
files) 

• inserting parameterized blocks of text (C macro 
invocations, COBOL copybooks) 

• selecting or deselecting existing blocks of text 
(including other preprocessor directives) based on 
some configuration variable or expression (e.g., C 
#if, #elsif, #else, #endif directives) 

• defining blocks of text for later inclusion (C macro 
#define) 

• marking certain identifiers used as configuration 
variables as defined (C #define with empty 
macro) or undefined 

• testing the definedness status of such 
configuration variables (C #ifdef, #ifndef, 
defined, undefined) 

• combining two or more language lexemes to 
create a new lexeme.  This is almost always used 
to construct a “gensym” identifier (C macro body 
operation ##). 

C, C++ and COBOL85 all provide a preprocessor 
facility defined by the language standard, based on the 
language lexemes.  Users of languages without native 
preprocessing facilities often fall back on the C 
preprocessor (if the lexeme structures are close enough, e.g. 
FORTRAN), custom preprocessors (e.g., Generic 
PreProcessor [6]) or on ad hoc solutions modeled after 
those for C, often based on a string processing tool like 
PERL. 

Ada83 (and Ada95) were specifically designed without 
a preprocessor on the grounds that such editing can be done 
by simply choosing, outside the scope of the language, 
which source components to use.  However, this artifice 
forces large grain source components that replicate 
considerable content, creating the very maintenance 



  

  

 

problem that preprocessor conditionals were meant to 
eliminate.  The result is that the argument over whether 
Ada should have a preprocessor continues to this day, with 
the many defectors forced to use an ad hoc solution. 

Another solution integrates the “preprocessor” 
directives and conditionals directly into the syntax of the 
programming language [9].  Unlike string or lexeme based 
preprocessors, syntax-based preprocessors are only allowed 
in a small number of places, such as declarations, 
statements and expressions; nonetheless, this solution 
provides all the essential configuration power needed.  This 
method was inspired by the difficulties of parsing 
languages containing preprocessor directives. 

In any case, preprocessor directives have repeatedly 
proven their utility for “configuration management in the 
large” to enable the economical construction of large scale 
software systems running on many platforms.  Compile-
time conditional configuration (misnamed “preprocessing” 
because of C’s implementation) is a permanent feature of 
the large systems landscape. 

3 Removing Dead Configurations 

Most large software systems have a lifetime of ten years 
or more, and there are banking, insurance and military 
applications with life spans approaching 50 years. Any 
long-lived artifact lives in an evolving world, and evolves 
with it. New configuration demands arrive, and old ones 
fade away. 

Our concern is with older configuration aspects that 
lose all utility, because the aspect addresses circumstances 
that no longer occur.  Paper tape support is no longer 
needed; Digital Equipment no longer manufactures VAX 
processors; and 8 bit operating systems vanish (SDOS in 
Figure 1; Microsoft has announced the death of MSDOS). 

Maintaining dead configurations in a large system 
increases its cost, as maintainers have to continually work 
around, understand, or even fix code for features they 
suspect, but are not sure, are no longer useful.  Such useless 
configurations may even be declared as dead by the system 
architects, and known by the grizzled programmers as 
useless.  Once a configuration aspect is declared dead, it 
would be ideal to remove everything related to it from a 
source system that is related to that aspect.  Otherwise, 
programmers, spending typically 50% of their time simply 
looking at source code, will spend precious time just to 
ignore the configuration, sometimes will waste precious 
time trying not to disturb the configuration, and finally, 
occasionally will actually use time fixing or enhancing the 
configuration in the mistaken belief that it is still useful. 

Attempts to remove such configuration variables by 
manual methods is often frustrated by scale, time pressures, 

and the sheer dullness of the task.  For a million SLOC C 
program with 1000 source files, assuming 15 minutes per 
file to check out, edit, compile, debug the inevitable 
occasional mistaken change, and regression-test, it takes 11 
person-weeks of effort to make a single pass.  Careful 
attention is required to make sure that shared configuration 
code is properly adjusted; in Figure 1, it is all to easy to 
erroneously delete the entire conditional block containing 
the file-appending logic when removing the SDOS 
configuration, and testing under DEMOS, since no compile-
time error will occur.  This problem is compounded by the 
fact that several configurations may die every year.  Most 
software engineers are not rewarded for doing such work, 
as the management perception is that there is always more 
pressing work to do, and the programmer perception is that 
the work is extremely repetitive. 

The inevitable conclusion is that an automated tool is 
needed to remove dead configurations. This should be done 
in a way that preserves as much of the source code 
structure (other preprocessor directives, indentation, 
spacing, number formats, comments, etc.) as possible, to 
prevent objections from programmers that “own” the code. 

Removing dead configurations is essentially a problem 
of removing dead code, a well-understood compiler 
problem.  However, one cannot use conventional compilers 
for this problem, as they perform dead code elimination on 
generated object code, in which the source, comments, and 
all preprocessor directives have been lost. 

Ad hoc solutions to this problem exist, apparently based 
on string processing, such as UNIFDEF, RMIFDEF, CPPP 
(based on PERL), SCPP (“Selective C preprocessor”), but 
are not good solutions because they do not really 
understand the full language lexical and grammatical 
syntax; their very nature makes them difficult to complete.  
Consequently, these tools can make significant errors, 
requiring the very manual intervention they were designed 
to avoid. For example, UNIFDEF does not handle 
defined or #elif preprocessor directives   Some of these 
tools leave complex conditionals in the code because they 
do not obviously simplify to TRUE or FALSE, retaining 
the very configuration variables they should be removing.  
Arguably, these defects could be repaired with enough 
effort. What cannot be easily repaired are more complex 
problems, such as determining that both arms of a 
conditional assign the same value to a preprocessor 
variable, i.e., invariant results.  We do not handle this 
either, but our approach can be extended to handle it, and to 
integrate with other reengineering activities. 

An industrial-strength transformation system can more 
reliably remove such configuration aspects, by 
symbolically simplifying away the dead configuration 
aspect. 



  

  

 

4 Industrial-Strength Transformation Systems 

By industrial strength transformation system, we mean 
ones that: 

• Accept language definitions for real languages 
• Can parse and prettyprint those languages 

on scale 
• Accept source-to-source rewrite rules 

in those languages 
• Can apply those rules to a source base reliably 

• Have been applied in practice 

We know of only a few such systems: 
• REFINE (available commercially from 

Reasoning Systems: www.reasoning.com) 
• TXL (available via www.txl.ca, formerly from 

Legasys) 
• DMS (available commercially from Semantic 

Designs: www.semdesigns.com) 

These tend to be commercial systems because of the 
effort it takes to implement them (the present DMS has 
well over 50 person-years invested directly in the 
engineering).  There are a host of other transformation 
systems, many listed at www.program-transformation.org.  
(The author apologizes to any that meet the criteria but are 
not listed here, and would appreciate knowing about them.) 

Many compiler toolkits (e.g. YACC) offer LL(1) or 
LALR(1) parsers, which work by definition only for very 
limited classes of languages.  Most compilers and tools 
tend to have parsers with ad-hoc modifications to step 
around parser limitations.  This means the compiler 
infrastructure is not good for a wide range of languages.  
What one needs is a full context-free parsing mechanism, 
which both TXL and DMS have (DMS uses GLR (aka 
Tomita) parsers [11, 10]). 

What distinguishes industrial-strength transformation 
systems from compiler toolkits is: the configurability and 
robustness of their parsing technology, the integration of 
that parsing technology with the pattern languages used for 
source-to-source rewriting, and the ability to regenerate 
legal source programs in all necessary details from internal 
representations (ASTs).  This capability is used for large 
scale reengineering (e.g., code porting), software quality 
analysis and enhancement (e.g., clone detection and 
removal [4]), etc. 

To use these transformation systems, the language 
syntax of interest has to be defined.  Because these tools are 
highly configurable, this is far less of a task than building a 
compiler front end.  Further, these systems are often 
available with predefined language modules for mainstream 
languages, such as C, C++, Ada, Fortran, etc. 

Without such foundations, it is uneconomical to build 
program transformation tools for legacy languages or large-
scale software systems. 

5 Source to Source Transformations 

Source to source program transformations (“rewrite 
rules”) are used to modify programs directly in terms of the 
programming language syntax.  (Other program 
transformations may be implemented by procedural code, 
or sets of transformations). These rewrites are usually 
stated in terms derived from an abstract or concrete 
grammar, and these terms in turn correspond to underlying 
abstract syntax trees. 

A typical rewrite rule abstractly has the following form: 
 LHS → RHS  if  condition 

where both LHS (“left hand side”) and RHS (“right hand 
side”) represent source language patterns with variables to 
represent arbitrarily long well formed language sub strings. 
The if condition is an optional phrase referring to the 
variables in the LHS pattern.  These rules are interpreted as, 
“when a program part matches the LHS, replace it by the 
RHS, if condition is true”.  The condition may be 
implemented as some additional matching constraints, or a 
call on some decision procedure. 

Real transformations systems add more syntax to this 
simple scheme to allow specification of more details about 
the patterns.  For DMS, an example rewrite on C code to 
convert an assignment statement into an auto-increment is 
shown in Figure 2.  This rule is written in DMS’s Rule 
Specification Language. (For these examples, we take 
advantage of the availability of a C language module for 
DMS.  We also take slight liberties with the transforms to 
simplify their presentation). 

This defines a rewrite rule with name auto_inc, 
having a syntax variable v of syntactic class lvalue.  
The rule is a map from a C statement to a C 
statement (maps from one syntax class to another, and 
maps from one language to another are also possible with 
DMS).  The text inside the quotation marks is legal C 
source, modulo the possibility of escaped rule language 
tokens (marked with \), such as syntax variables (e.g., 

default domain C. 

rule auto_inc(v:lvalue): 
    statement->statement = 
  “\v = \v+1;” rewrites to “\v++;” 
       if no_side_effects(v). 
 

Figure 2: A DMS rewrite rule 



  

  

 

\v), which stand for arbitrary legal C source satisfying the 
syntactic category lvalue.  The left hand quoted string is 
the rule LHS, and the right hand quoted string is the RHS.  
The occurrence of the same syntax variable multiple times 
in the LHS requires that the same exact sequence occur in 
both places; this is how the rule is constrained to match 
identical source and target.  The occurrence of the syntax 
variable in the RHS requires that the changed program 
include what was matched for that variable on the LHS.  
Finally, the if condition in this rule is a language-dependent 
decision procedure that makes sure that the program 
fragment matched by \v contains no side effects, which 
would make this transformation incorrect. 

Before rule use, a typical rewriting engine first parses 
the rule according to its rule language, and then parses the 
quoted pattern in the language to be transformed (here 
specified by the default domain phrase as the “C” 
language), to construct pattern trees.  At transformation 
time, the rewrite engine matches the LHS pattern tree 
against portions of the program, and replaces matched trees 
by the corresponding RHS tree if the condition is satisfied. 
The Figure 2 rule has the effect shown in Figure 3. 

Typically a transformation system will have a large 
number of rules, and a large number of possible places in a 
program to apply them.  It is beyond the scope of this paper 
to describe how the transformation system chooses which 
rules and where to apply them.  The simple notion that all 
rules possessed are applied leaf-upwards to the entire parse 
tree for a file is adequate for this paper, and supported 
directly as one mode of operation of DMS. 

DMS captures comments and number literal formats 
(radix, leading zeros, etc) while lexing and attaches them to 
the trees while parsing, and is later able to reproduce the 
source program in its original- or transformed-form from 
the trees with all the essential formatting information.  
Further discussion of the DMS prettyprint capability is 
outside the scope of this paper. Comments attached to 
undisturbed trees, and to the roots of rewritten trees are 
preserved, and so comments are not generally lost or 
changed by rewriting.  (One can always build special rules 
that change this behavior). 

6 A Simplified C grammar 

In this section we briefly sketch a simplified version of 
the “C” grammar we use, because the rewrite rules are 
defined in terms of grammar tokens. Arguably, we could 

have defined only a “preprocessor” language, treating the 
regions between preprocessor directives as uninterpreted 
text, but it is more economical to amortize our 
reengineering investments by operating on a full C 
grammar.  Such a full grammar enables other reengineering 
activities to be implemented, such as source reformatting, 
clone detection, refactoring, etc. Figure 12 shows a 
subgrammar for preprocessor expressions. 

We wish to parse “C” source before preprocessor 
expansion occurs.  However, C preprocessor directives can 
occur between any pair of tokens.  One can code a grammar 
for that, but it is extremely unwieldy and therefore 
impractical. 

Instead, we allow preprocessor directives in the 
grammar only at places where they commonly occur in real 
programs.  Figures 10 and 11 show subgrammars, which 
allow directives only at file scope and in lists of statements, 
respectively.  Allowing directives in other places in the 
grammar is straightforward: replicate the preprocessor 
conditional subgrammar and instantiate for that place type. 
In the actual grammar we allowed them in locals lists, and 
inside expressions and several other places. 

7 Parsing Unpreproccessed C 

There are a number of other complications that occur 
trying to parse C this way.  We have a special preprocessor 
that delays expanding directives if it can and collects 
information from include files without expanding them in 
place. “Different” values of a #defined variable may 
reach the end of a preprocessor conditional. Macro calls 
often ambiguously look like function calls and have 
possibly to be resolved later.  Discussion of how all this is 
handled is beyond the scope of this paper. 

With sundry additional help in place, DMS parses 
typically 85% of unpreprocessed C source files in large, 
real source systems directly, producing ASTs containing 
preprocessor conditionals.  The unparsable balance tends to 
use preprocessor directives in unstructured ways.   Figure 4 

before: (*Z)[a>>2]=(*Z)[a>>2]+1; 

after:  (*Z)[a>>2]++; 

Figure 3 

if (. . .) 
      { . . . 

#if (. . .) 

       } else { 

#endif 

     . . . 

      }; 

Figure 4: Badly nested preprocessor directives and 
language conditionals 



  

  

 

shows one example, in which the nesting of the 
preprocessor conditional is inconsistent with the nesting of 
the if statement.  The reaction of most staff to this kind of 
trick is first, horror, and then second, to insist on removing 
the trick from the source.  Doing such repairs on 50K 
SLOC of C code can take an afternoon.  So with some 
motivated code cleanup help, we are able to read large 
systems.  Of course, tricky idioms common to a system can 
simply be added to the grammar, and then transformed 
away. 

8 Partial Evaluation 

A method for simplifying programs when program 
parameters are known is called partial evaluation [8].  The 
basic idea is that computations having one or more constant 
operands often have algebraic rules that show equivalence 
to often much simpler computations (e.g., pow(x,n), the 
C idiom for xn, when n is 2, can be replaced by x*x).  
Often, there is a cascade of simplifications when a complex 
operation decays into a constant, feeding further 
simplifications (e.g,  x/pow(x,n) when n is 1 reduces to 
just 1 for nonzero x). 

An industrial strength transformation system can 
encode the basic partial evaluation rules directly, in the 
surface syntax forms of the language being simplified.  
Figure 5 shows the rules from the previous paragraph. 

Figure 6 shows partial evaluation rules for Boolean 
expressions in preprocessor conditionals.  These handle 
partial evaluation of Boolean expressions in preprocessor 
expressions.  We don’t need to write rules for all 
combinations of commutative operators (e.g., “0 || \e”) 
because we have declared the grammar rules that 
correspond to those operators as associative-

commutative, and so the matcher knows to try the other 
orders. 

Sophisticated partial evaluation for procedural 
languages often requires data flow analysis to determine 
how optimized results in one part of the program may 
enable optimizations in another part, such as when a 
constant is assigned to a variable used and updated in many 

other places in the code.  For preprocessor simplification, 
we do not need much of this, as most preprocessor 
variables are assigned once, and preprocessor conditional 
expressions are completely functional.  In fact, the DMS 
preprocessor does a kind of dataflow analysis of 
preprocessor values across preprocessor conditionals, but 
that discussion is outside the scope of this paper.  More 
importantly, no preprocessor variable assignment inside a 
conditional can affect what the conditional or its containing 
parents will do. 

We implement preprocessor conditional removal as 
partial evaluation using rewrite rules, with known constant 
values for selected configuration aspects.  We count 

rule or_true(e:ppexp): ppexp->ppexp: 
  “\e || 1” rewrites to “1”. 

rule or_false(e:ppexp): ppexp->ppexp: 
  “\e || 0” rewrites to “\e”. 

rule and_true(e:ppand): ppand->ppand: 
  “\e && 1” rewrites to “\e”. 

rule and_false(e:ppand): ppand->ppand: 
  “\e && 0” rewrites to “0”. 

rule not_true(): ppterm->ppterm: 
  “! 1” rewrites to “0”. 

rule not_false(): ppterm->ppterm: 
  “! 0” rewrites to “1”. 

rule parenthesesK(n:NATURAL): 
   ppexp->ppexp: 
  “( \n )” rewrites to “\n”. 

ruleset boolean_partial_evaluate = 
  { or_true, or_false, 
    and_true, and_false, 
    not_true, not_false, 
    paranthesesK }. 

Figure 6: Preprocessor expression 
Boolean equation partial evaluation 

rule simplify_x_squared(e:exp): 
   product-> product = 
    “pow(\e,2.)” rewrites to “\e*\e” 
   if no_side_effects(e). 

rule simplify_divide_by_1(e:exp): 
   product->product = 
   “ \e / 1 “ rewrites to “\e”. 

Figure 5: Some partial evaluation rules in C 

rule delete_SDOS(): ppexp->ppexp: 
  “SDOS” rewrites to “0”. 

rule fast_newline(): ppexp->ppexp: 
  “CRLFDelay” rewrites to “0”. 

rule one_display(): ppexp->ppexp: 
  “NumberOfScreens” rewrites to “1”. 

ruleset clean_up = 
  { delete_SDOS, no_newline_nulls, 
    one_display_only }. 

Figure 7 Rewrites encoding future permanent state 
of dead configuration aspects 



  

  

 

heavily on chains of simplification to carry out the actual 
removal process. 

Application of partial evaluation on abstract C 
preprocessor directives was considered by [5], but he did 
not build a running system. 

9 Rewrites for Preprocessor Simplification 

We need three sets of rules to remove useless 
preprocessor directives: 

1) Custom rewrites specifying which configuration 
parameters are permanently set 

2) Boolean algebra partial evaluation for the 
constants true and false (Figure 6). 

3) Preprocesser conditional simplification for true 
and false conditions. 

The first set is shown in Figure 7.  Their purpose is to 
specify the permanent future status of the configuration 
parameter(s) that we wish to remove, and are determined 
by the specific application we wish to revise. The syntax 
class ppexp refers to “preprocessor expressions”, which 
are distinct from the syntax class for normal C expressions, 
expr.  We package the individual rules into a rule set, to 
make it easier to apply them all as a group. In general, this 
rule set is likely to be a very small set, because we discover 
the need to remove configurations rarely, encode the set of 
interest, and then run the removal process. 

The preprocessor Boolean condition rewrites in Figure 
6 is the second set.  A subset of the third set of rewrites are 
shown in Figures 13 and 14. These are required to partially-
evaluate preprocessor conditionals when the condition 
status is known to be false (0) or true (1).  The number of 
rules is explained by the combinatorial properties of #if, 
#elsif and #else in the grammar.  In fact, we only show 
the rules for preprocessor directives allowed at file scope.  

Nearly identical rules are required for preprocessor 
conditionals allowed at other points in the grammar, such 
as at statement-list level. The Boolean rewrites and 
preprocessor conditional simplification rules are used for 
every preprocessor removal.run. 

10 Application and Results 

Using the tools to remove conditionals is 
straightforward.  The dead configuration aspects are coded 
as rules, added to the preprocessor partial evaluation rules, 
and supplied as the rules base for DMS to use  (Figure 8).  
The source file(s) of interest are parsed using the C 
grammar definition, the rules are also parsed using that 
definition, and then DMS applies the rules to carry out the 
partial evaluation with respect to the dead configuration 
aspects. The result of applying Figure 6 to Figure 1 is 
shown in Figure 9. 

For ANSI C, the actual set of rewrites is rather larger 
than is shown here because of the number of places 

#ifndef Unix 
#define Unix 1 
#endif 

… 
char filename[132]; 

… 
#if (Unix)&!DEMOS 
  append_to(&filename,&extension); 
#endif 
#if Unix 
   if (errno=fopen(&filename,readmode)) 
      { exit(errno); } 
#else // DEMOS 

… 
#endif 
 

Figure 9: Preprocessor simplification result 

 

Figure 8: Preprocessor Removal Process 
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preprocessor conditionals are allowed in the grammar.  
Nonetheless, it took one-person day to encode several 
hundred similar rules, and one day to test the complete set 
(of course, we had already built the C grammar for other 
reengineering activities, and paid the cost of learning how 
to use the tools).  DMS was then applied to a commercially 
successful software system of 1.5 million SLOC in 1800 
files, and carried out fully automated preprocessor removal 
for about 80% without intervention.  The remaining files 
required hand-remediation of unstructured preprocessor 
directives before automated removal was successful.  The 
customer for whom this work was done estimated that 10 
weeks was removed from a very busy schedule. 

11 Future Work 

For languages having real “pre” processors, there are 
still some problems when the preprocessor conditionals fail 
to nicely nest with the language structures.  Our practical 
experience is that these problems can be fixed manually at 
modest cost, and those fixes will make the code not only 
more understandable to the software engineers, but make it 
that much easier to apply automated tools for the next 
interesting task.  However, being able to handle these cases 
would make the tools materially easier to apply on large 
systems.  We plan to parse such fragments as a stream of 
trees, with an assembly constraint corresponding to the 
nonterminal around the largest unparseable chunk.  It is our 
understanding that this may not work with sophisticated 
preprocessor usage possible with the PL/I preprocessor. 

One can avoid this difficulty in new language designs, 
by integrating the “preprocessor” directives at suitable 
places in the language syntax.  We have already done that 
with our internal parallel-processing language, 
PARLANSE, with benefits accruing in simplified parsing 
and analysis. 

Our present tool also does not handle cascaded 
preprocessor assignments.  As a consequence of removing 
a conditional from around a line such as #define FOO 1, 
FOO becomes clearly a known constant, and further 
simplifications can occur.  When a conditional is removed, 
it is straightforward to rescan the suddenly unconditional 
trees to detect such assignments.  One could then use a 
procedural transform to implement the additional 
configuration aspect rewrite (i.e., substituting the value), 
thereby enabling possibly further simplifications. 

Conclusion 

We considered preprocessors as compile-time text 
editors, and the permanent role they play in economically 
configuring large systems for many platforms. We have 
discussed the problem of removing defunct configuration 

aspects by removing their implementing preprocessor 
conditionals from real source codes by using partial 
evaluation methods. 

To carry this out in practice, one needs industrial 
strength program transformation systems, such as DMS, 
that allow one to specify the target language, the basic 
partial evaluation rules, and rules that specify which 
configuration aspects are to be removed. 

These tools have been automatically applied to large 
suites of C code, producing correct results in a few hours, 
saving large amounts of manual modification, and saving 
future maintenance costs.  Such tools can easily be 
reconfigured for other programming languages having 
preprocessor directives. 

Such industrial strength transformation systems promise 
to make massive software modifications much more 
practical, and therefore much more common. 
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Simplified C grammar 
 

ppexp = ppand ; 

 

[associative-commutative] 
    ppexp = ppexp ‘|’ ppand ; 

ppand = ppsum ; 

 

[associative-commutative] 
   ppand = ppand ‘&’ ppreln ; 

 

ppreln = ppterm ; 

ppreln = ppterm ‘==’ ppterm ; 

ppterm = NATURAL ; 

ppterm = ‘(‘ ppexp ‘)’ ; 

ppterm = ‘!’ ppterm ; 

Figure 12: Simplified C: 
Preprocessor expression subgrammar 

body = locals stmt_list ; 

stmt_list = ; 

stmt_list = stmt_list stmt ; 

stmt = exp_stmt ; 

stmt = ‘if’ ‘(‘ exp ‘)’ stmt ; 

stmt = ‘{‘ body ‘}’ ; 

stmt = 
   ‘#’ ‘if’ ppexp ppNL 
       stmt_list 
    ppthen_stmt ; 

ppthen_stmt = ‘#’ ‘endif’ ppNL ; 

ppthen_stmt = 

   ‘#’ ‘else’ ppNL ; 
        stmt_list 
   ‘#’ ‘endif’ ppNL ; 

ppthen_stmt = 
   ‘#’ ‘elsif’ ppexp ppNL 
        stmt_list 
    ppthen_stmt ; 

Figure 11: Simplified C: 
Statement list subgrammar 

program = decl_list ; 

decl_list = ; 

decl_list = decl_list decl ; 

decl = var_declaration ; 

decl = 
   type IDENTIFIER ‘(‘ params ‘)’ 
        ‘{‘ body ‘}’; 

decl = 
   ‘#’ ‘if’ ppexp ppNL 
       decl_list 
   ppthen_decl ; 

ppthen_decl = ‘#’ ‘endif’ ppNL ; 

ppthen_decl = 

   ‘#’ ‘else’ ppNL ; 
        decl_list 
   ‘#’ ‘endif’ ppNL ; 

ppthen_decl =  
   ‘#’ ‘elsif’ ppexp ppNL 
       decl_list 
   ppthen_decl ; 

Figure 10: Simplified C: 
File scope subgrammar 

Note: ppNL is the name of the C grammar token for 
a preprocessor new line. 



  

  

 

 

Rules to simplify preprocessor conditionals 

 

rule decl_if_true_endif 
    (d:decl_list): decl->decl = 
  “#if 1 \&n \d #endif \&n” 
     rewrites to “\d”. 

rule decl_if_false_endif 
    (d:decl_list): decl->decl = 
  “#if 0 \&n \d #endif \&n” 
     rewrites to “;”. 

rule decl_if_true_else 
    (d1:decl_list,d2:decl_list): 
    decl->decl = 
  “#if 1 \&n \d1  
   #else \&n \d2 #endif \&n” 
     rewrites to “\d1”. 

rule decl_if_false_else 
    (d1:decl_list,d2:decl_list): 
    decl->decl = 
  “#if 0 \&n \d1  
   #else \&n \d2 #endif \&n” 
     rewrites to “\d2”. 

rule decl_if_true_elseif 
    (d1:decl_list,e:ppexp, 
     d2:decl_list,rest:ppthen_decl): 
    decl->decl = 
  “#if 1 \&n \d1  
   #elsif (\e) \&n \d2 \rest” 
     rewrites to “\d1”. 

rule decl_if_false_elsif 
    (d1:decl_list,e:ppexp, 
     d2:decl_list,rest:ppthen_decl): 
    decl->decl =  
  “#if 0 \&n \d1  
   #elsif \e \&n \d2 \rest” 
     rewrites to 
  “#if \e \&n \d2 \rest”. 

Figure 13: #if partial evaluation rules 

rule decl_elsif_true_endif 
    (d:decl_list): 
    ppthen_decl->ppthen_decl = 
  “#elsif 1 \&n \d #endif \&n” 
     rewrites to 
  “#else \&n \d #endif \&n”. 

rule decl_elsif_false_endif 
    (d:decl_list): 
       ppthen_decl->ppthen_decl = 
  “#elsif 0 \&n \d #endif \&n” 
     rewrites to “#endif \&n”. 

rule decl_elsif_true_else 
    (d1:decl_list,d2:decl_list): 
    ppthen_decl->ppthen_decl = 
  “#elsif 1 \&n \d1  
   #else \&n \d2 #endif \&n” 
     rewrites to 
  “#else \&n \d1 #endif \&n”. 

rule decl_elsif_false_else 
    (d1:decl_list,d2:decl_list): 
    decl->decl = 
  “#elsif 0 \&n \d1  
   #else \&n \d2 #endif \&n” 
     rewrites to 
  “#else \&n \d2 #endif \&n”. 

rule decl_elsif_true_elsif 
    (d1:decl_list,e:ppexp, 
     d2:decl_list,rest:ppthen_decl): 
     decl->decl = 
  “#elsif 1 \&n \d1  
   #elsif \e \&n \d2 \rest” 
     rewrites to 
  “#elsif 1 \&n \d1 \rest”. 

rule decl_elsif_false_elsif 
    (d1:decl_list,e:ppexp, 
     d2:decl_list,rest:ppthen_decl): 
     ppthen_decl->ppthen_decl = 
  “#elsif 0 \&n \d1  
   #elsif \e \&n \d2 \rest” 
     rewrites to 
  “#elsif \e \&n \d2 \rest”. 

Figure 14: #else partial evaluation rules 
Note: inside DMS patterns, actual newline characters 
are treated as whitepsace.   \&n is an escape 
encoding an actual newline character 



 

 


