

Preprocessor Conditional Removal by Simple Partial Evaluation
 Ira D. Baxter

Michael Mehlich
Semantic Designs, Inc.
www.semdesigns.com

{idbaxter,mmehlich}@semdesigns.com

Keywords
Partial evaluation, symbolic computation,

preprocessor, program transformations

Abstract

Preprocessors with conditionals are often used as
software configuration management tools, with
preprocessor variables naming configuration aspects. The
preprocessor conditionals found in large systems often
have complex enabling Boolean equations and nesting.
Over long periods, some configuration aspects lose all
utility. Removal of all traces of a configuration variable
and code dependent on that aspect becomes a significant
task if performed manually.

An industrial-strength transformation system can
remove such configuration aspects in a much shorter
period of time, by symbolically simplifying away the
configuration aspect. This paper sketches the problem, and
the required transforms, and discusses a case study
involving over a million lines of source code.

1 Removing Preprocessor Conditionals

Preprocessor directives are ubiquitous in a large
software system, primarily existing to help configure
aspects of the system for the variety of environments in
which it runs to amortize its development cost. Typically
these directives select language dialect, operating system or
libraries (or versions thereof), application features,
performance features, CPU type, word size, etc.

Different concerns are often (but not always)
independent; the operating system chosen is usually
independent of application features. We call each of these
semi-separate concerns a configuration aspect. Such
aspects are usually enabled or disabled in a binary fashion.

The success of a software system shows in its longevity.
That longevity ensures that system configurations that were
once valuable (e.g., VAXen) eventually become useless.
Maintaining useless configurations in a large system
increases its cost, as maintainers have to continually work
around, understand, or even fix code for features they
suspect, but are not sure, are no longer useful. Once a
configuration aspect is declared dead, it would be ideal to
remove everything from a source system that is related to
that aspect.

Person-weeks of effort are required to do this manually
for systems of scale (e.g., millions of source lines with
thousands of files), and the work is unrewarding for the
assigned individual.

Some kind of automation is needed. This should be
done in a way that preserves as much of the source code
structure (other preprocessor directives, indentation,
spacing, number formats, comments, etc.) as possible, to
prevent objections from programmers that “own” the code.

Ad hoc automated tools for this problem exist, usually
based on string processing. These almost work, but are not
good solutions because they do not really understand the
full language syntax. Consequently, they can make errors
at a significant rate on large systems, requiring the very
manual intervention they were designed to avoid.

This work uses DMS, an industrial-strength
transformation system. (DMS is intended to eventually
support design maintenance [1,2,3], but is presently used
for reengineering applications [4]). DMS accomplishes the
desired effect by implementing partial evaluation of
conditional preprocessor directives as a set of rewrite rules.
Such transformation systems do understand the language
syntax, and so can avoid the problems of ad hoc solutions.
The rewrites implement what amounts to a Boolean
expression simplifier and dead-branch elimination from
if-then-else constructs. The value of DMS is its ability
to parse difficult languages such as C and C++ in the
presence of preprocessor directives, and the
straightforwardness of the rewrites for accomplishing the
desired effect.

Section 2 discusses preprocessors. Section 3 discusses
the problems in preprocessor directive removal. Section 4
discusses industrial-scale transformation systems. Section
5 shows how source-to-source transformations are encoded
and operate. Section 6 shows how we handle parsing
preprocessor directives. Section 7 discusses practical
issues when parsing preprocessor directives. Section 8
describes how partial evaluation can be used to simplify
constructs. Section 9 shows the source-to-source
transformation rules needed to remove the dead
preprocessor directives. Section 10 shows the results, and
Section 11 discusses future work.

 Copyright 2001 IEEE. Published in the Proceedings of WCRE’2001, October 2-5, 2001 in Stuttgart, Germany. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and
Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 088-1331, USA. Telephone: + Intl. 908-562-3966.

#ifndef Unix
#define Unix 1
#endif

…
char filename[132];
#if SDOS
short int result[256];
int status;
#endif

…
#if (SDOS|Unix)&!DEMOS
 append_to(&filename,&extension);
#endif
#if SDOS
 syscall(OS_openfile,&filename,
 OS_readonly,&status,&result,);
 if (status!=OS_no_error)
 syscall(OS_exit_with_error,
 &status,OS_dummy,
 &status,&result);
#elsif Unix
 if (errno=fopen(&filename,readmode))
 { exit(errno); }
#else // DEMOS

…
#endif

Figure 1: Source code with preprocessor directives

2 Preprocessors

Many programming language environments provide
“preprocessor” facilities, allowing considerable automated
“editing” of a source file “before” it is seen by the language
processor. Preprocessors with conditionals are often used
as compile-time software configuration management tools,
with preprocessor “variables” naming configuration
aspects. These aspects can be Boolean (enabling or
disabling a feature) or parametric (e.g. a integer specifying
a buffersize), usually with a parameter value that by
convention disables the feature (e.g., buffersize ==
0).

Figure 1 shows typical configured source code. The
preprocessor variables Unix, DEMOS and SDOS are aspects
controlling which operating system calls are made. By
configuration, we mean all source code defining or
dependent on an aspect; for SDOS, this is the conditional
declaration of a result buffer, the filename extension-
appending code, and the “then” branch of the file opening
logic. Note that configurations often overlap because of
shared logic, such as appending the extension.

The configuration space managed can be enormous. N
Boolean configuration variables can provide for up to 2N
possibly different instantiated configuration; the Linux
operating system has roughly 1000 configuration variables
[7]. The preprocessor conditionals found in large systems

often have complex enabling Boolean equations over these
aspects, which encode configuration dependencies, and
complex nesting to allow code sharing between
configurations.

The term “preprocessor” comes from the fact that these
facilities have traditionally been grafted onto languages as
an afterthought, and consequently implemented as a
“preprocessing” pass to perform the “editing”, and
occurring before the compilation step (most Unix systems
and many “C” compilers). For efficiency reasons,
preprocessing is often now integrated into the compile step,
but the name remains.

The preprocessor provides, via special “preprocessor
directives” easily found in the program text, several types
of facilities that change the apparent source file:

• importing fixed blocks of text (C #include
files)

• inserting parameterized blocks of text (C macro
invocations, COBOL copybooks)

• selecting or deselecting existing blocks of text
(including other preprocessor directives) based on
some configuration variable or expression (e.g., C
#if, #elsif, #else, #endif directives)

• defining blocks of text for later inclusion (C macro
#define)

• marking certain identifiers used as configuration
variables as defined (C #define with empty
macro) or undefined

• testing the definedness status of such
configuration variables (C #ifdef, #ifndef,
defined, undefined)

• combining two or more language lexemes to
create a new lexeme. This is almost always used
to construct a “gensym” identifier (C macro body
operation ##).

C, C++ and COBOL85 all provide a preprocessor
facility defined by the language standard, based on the
language lexemes. Users of languages without native
preprocessing facilities often fall back on the C
preprocessor (if the lexeme structures are close enough, e.g.
FORTRAN), custom preprocessors (e.g., Generic
PreProcessor [6]) or on ad hoc solutions modeled after
those for C, often based on a string processing tool like
PERL.

Ada83 (and Ada95) were specifically designed without
a preprocessor on the grounds that such editing can be done
by simply choosing, outside the scope of the language,
which source components to use. However, this artifice
forces large grain source components that replicate
considerable content, creating the very maintenance

problem that preprocessor conditionals were meant to
eliminate. The result is that the argument over whether
Ada should have a preprocessor continues to this day, with
the many defectors forced to use an ad hoc solution.

Another solution integrates the “preprocessor”
directives and conditionals directly into the syntax of the
programming language [9]. Unlike string or lexeme based
preprocessors, syntax-based preprocessors are only allowed
in a small number of places, such as declarations,
statements and expressions; nonetheless, this solution
provides all the essential configuration power needed. This
method was inspired by the difficulties of parsing
languages containing preprocessor directives.

In any case, preprocessor directives have repeatedly
proven their utility for “configuration management in the
large” to enable the economical construction of large scale
software systems running on many platforms. Compile-
time conditional configuration (misnamed “preprocessing”
because of C’s implementation) is a permanent feature of
the large systems landscape.

3 Removing Dead Configurations

Most large software systems have a lifetime of ten years
or more, and there are banking, insurance and military
applications with life spans approaching 50 years. Any
long-lived artifact lives in an evolving world, and evolves
with it. New configuration demands arrive, and old ones
fade away.

Our concern is with older configuration aspects that
lose all utility, because the aspect addresses circumstances
that no longer occur. Paper tape support is no longer
needed; Digital Equipment no longer manufactures VAX
processors; and 8 bit operating systems vanish (SDOS in
Figure 1; Microsoft has announced the death of MSDOS).

Maintaining dead configurations in a large system
increases its cost, as maintainers have to continually work
around, understand, or even fix code for features they
suspect, but are not sure, are no longer useful. Such useless
configurations may even be declared as dead by the system
architects, and known by the grizzled programmers as
useless. Once a configuration aspect is declared dead, it
would be ideal to remove everything related to it from a
source system that is related to that aspect. Otherwise,
programmers, spending typically 50% of their time simply
looking at source code, will spend precious time just to
ignore the configuration, sometimes will waste precious
time trying not to disturb the configuration, and finally,
occasionally will actually use time fixing or enhancing the
configuration in the mistaken belief that it is still useful.

Attempts to remove such configuration variables by
manual methods is often frustrated by scale, time pressures,

and the sheer dullness of the task. For a million SLOC C
program with 1000 source files, assuming 15 minutes per
file to check out, edit, compile, debug the inevitable
occasional mistaken change, and regression-test, it takes 11
person-weeks of effort to make a single pass. Careful
attention is required to make sure that shared configuration
code is properly adjusted; in Figure 1, it is all to easy to
erroneously delete the entire conditional block containing
the file-appending logic when removing the SDOS
configuration, and testing under DEMOS, since no compile-
time error will occur. This problem is compounded by the
fact that several configurations may die every year. Most
software engineers are not rewarded for doing such work,
as the management perception is that there is always more
pressing work to do, and the programmer perception is that
the work is extremely repetitive.

The inevitable conclusion is that an automated tool is
needed to remove dead configurations. This should be done
in a way that preserves as much of the source code
structure (other preprocessor directives, indentation,
spacing, number formats, comments, etc.) as possible, to
prevent objections from programmers that “own” the code.

Removing dead configurations is essentially a problem
of removing dead code, a well-understood compiler
problem. However, one cannot use conventional compilers
for this problem, as they perform dead code elimination on
generated object code, in which the source, comments, and
all preprocessor directives have been lost.

Ad hoc solutions to this problem exist, apparently based
on string processing, such as UNIFDEF, RMIFDEF, CPPP
(based on PERL), SCPP (“Selective C preprocessor”), but
are not good solutions because they do not really
understand the full language lexical and grammatical
syntax; their very nature makes them difficult to complete.
Consequently, these tools can make significant errors,
requiring the very manual intervention they were designed
to avoid. For example, UNIFDEF does not handle
defined or #elif preprocessor directives Some of these
tools leave complex conditionals in the code because they
do not obviously simplify to TRUE or FALSE, retaining
the very configuration variables they should be removing.
Arguably, these defects could be repaired with enough
effort. What cannot be easily repaired are more complex
problems, such as determining that both arms of a
conditional assign the same value to a preprocessor
variable, i.e., invariant results. We do not handle this
either, but our approach can be extended to handle it, and to
integrate with other reengineering activities.

An industrial-strength transformation system can more
reliably remove such configuration aspects, by
symbolically simplifying away the dead configuration
aspect.

4 Industrial-Strength Transformation Systems

By industrial strength transformation system, we mean
ones that:

• Accept language definitions for real languages
• Can parse and prettyprint those languages

on scale
• Accept source-to-source rewrite rules

in those languages
• Can apply those rules to a source base reliably

• Have been applied in practice

We know of only a few such systems:
• REFINE (available commercially from

Reasoning Systems: www.reasoning.com)
• TXL (available via www.txl.ca, formerly from

Legasys)
• DMS (available commercially from Semantic

Designs: www.semdesigns.com)

These tend to be commercial systems because of the
effort it takes to implement them (the present DMS has
well over 50 person-years invested directly in the
engineering). There are a host of other transformation
systems, many listed at www.program-transformation.org.
(The author apologizes to any that meet the criteria but are
not listed here, and would appreciate knowing about them.)

Many compiler toolkits (e.g. YACC) offer LL(1) or
LALR(1) parsers, which work by definition only for very
limited classes of languages. Most compilers and tools
tend to have parsers with ad-hoc modifications to step
around parser limitations. This means the compiler
infrastructure is not good for a wide range of languages.
What one needs is a full context-free parsing mechanism,
which both TXL and DMS have (DMS uses GLR (aka
Tomita) parsers [11, 10]).

What distinguishes industrial-strength transformation
systems from compiler toolkits is: the configurability and
robustness of their parsing technology, the integration of
that parsing technology with the pattern languages used for
source-to-source rewriting, and the ability to regenerate
legal source programs in all necessary details from internal
representations (ASTs). This capability is used for large
scale reengineering (e.g., code porting), software quality
analysis and enhancement (e.g., clone detection and
removal [4]), etc.

To use these transformation systems, the language
syntax of interest has to be defined. Because these tools are
highly configurable, this is far less of a task than building a
compiler front end. Further, these systems are often
available with predefined language modules for mainstream
languages, such as C, C++, Ada, Fortran, etc.

Without such foundations, it is uneconomical to build
program transformation tools for legacy languages or large-
scale software systems.

5 Source to Source Transformations

Source to source program transformations (“rewrite
rules”) are used to modify programs directly in terms of the
programming language syntax. (Other program
transformations may be implemented by procedural code,
or sets of transformations). These rewrites are usually
stated in terms derived from an abstract or concrete
grammar, and these terms in turn correspond to underlying
abstract syntax trees.

A typical rewrite rule abstractly has the following form:
 LHS → RHS if condition

where both LHS (“left hand side”) and RHS (“right hand
side”) represent source language patterns with variables to
represent arbitrarily long well formed language sub strings.
The if condition is an optional phrase referring to the
variables in the LHS pattern. These rules are interpreted as,
“when a program part matches the LHS, replace it by the
RHS, if condition is true”. The condition may be
implemented as some additional matching constraints, or a
call on some decision procedure.

Real transformations systems add more syntax to this
simple scheme to allow specification of more details about
the patterns. For DMS, an example rewrite on C code to
convert an assignment statement into an auto-increment is
shown in Figure 2. This rule is written in DMS’s Rule
Specification Language. (For these examples, we take
advantage of the availability of a C language module for
DMS. We also take slight liberties with the transforms to
simplify their presentation).

This defines a rewrite rule with name auto_inc,
having a syntax variable v of syntactic class lvalue.
The rule is a map from a C statement to a C
statement (maps from one syntax class to another, and
maps from one language to another are also possible with
DMS). The text inside the quotation marks is legal C
source, modulo the possibility of escaped rule language
tokens (marked with \), such as syntax variables (e.g.,

default domain C.

rule auto_inc(v:lvalue):
 statement->statement =
 “\v = \v+1;” rewrites to “\v++;”
 if no_side_effects(v).

Figure 2: A DMS rewrite rule

\v), which stand for arbitrary legal C source satisfying the
syntactic category lvalue. The left hand quoted string is
the rule LHS, and the right hand quoted string is the RHS.
The occurrence of the same syntax variable multiple times
in the LHS requires that the same exact sequence occur in
both places; this is how the rule is constrained to match
identical source and target. The occurrence of the syntax
variable in the RHS requires that the changed program
include what was matched for that variable on the LHS.
Finally, the if condition in this rule is a language-dependent
decision procedure that makes sure that the program
fragment matched by \v contains no side effects, which
would make this transformation incorrect.

Before rule use, a typical rewriting engine first parses
the rule according to its rule language, and then parses the
quoted pattern in the language to be transformed (here
specified by the default domain phrase as the “C”
language), to construct pattern trees. At transformation
time, the rewrite engine matches the LHS pattern tree
against portions of the program, and replaces matched trees
by the corresponding RHS tree if the condition is satisfied.
The Figure 2 rule has the effect shown in Figure 3.

Typically a transformation system will have a large
number of rules, and a large number of possible places in a
program to apply them. It is beyond the scope of this paper
to describe how the transformation system chooses which
rules and where to apply them. The simple notion that all
rules possessed are applied leaf-upwards to the entire parse
tree for a file is adequate for this paper, and supported
directly as one mode of operation of DMS.

DMS captures comments and number literal formats
(radix, leading zeros, etc) while lexing and attaches them to
the trees while parsing, and is later able to reproduce the
source program in its original- or transformed-form from
the trees with all the essential formatting information.
Further discussion of the DMS prettyprint capability is
outside the scope of this paper. Comments attached to
undisturbed trees, and to the roots of rewritten trees are
preserved, and so comments are not generally lost or
changed by rewriting. (One can always build special rules
that change this behavior).

6 A Simplified C grammar

In this section we briefly sketch a simplified version of
the “C” grammar we use, because the rewrite rules are
defined in terms of grammar tokens. Arguably, we could

have defined only a “preprocessor” language, treating the
regions between preprocessor directives as uninterpreted
text, but it is more economical to amortize our
reengineering investments by operating on a full C
grammar. Such a full grammar enables other reengineering
activities to be implemented, such as source reformatting,
clone detection, refactoring, etc. Figure 12 shows a
subgrammar for preprocessor expressions.

We wish to parse “C” source before preprocessor
expansion occurs. However, C preprocessor directives can
occur between any pair of tokens. One can code a grammar
for that, but it is extremely unwieldy and therefore
impractical.

Instead, we allow preprocessor directives in the
grammar only at places where they commonly occur in real
programs. Figures 10 and 11 show subgrammars, which
allow directives only at file scope and in lists of statements,
respectively. Allowing directives in other places in the
grammar is straightforward: replicate the preprocessor
conditional subgrammar and instantiate for that place type.
In the actual grammar we allowed them in locals lists, and
inside expressions and several other places.

7 Parsing Unpreproccessed C

There are a number of other complications that occur
trying to parse C this way. We have a special preprocessor
that delays expanding directives if it can and collects
information from include files without expanding them in
place. “Different” values of a #defined variable may
reach the end of a preprocessor conditional. Macro calls
often ambiguously look like function calls and have
possibly to be resolved later. Discussion of how all this is
handled is beyond the scope of this paper.

With sundry additional help in place, DMS parses
typically 85% of unpreprocessed C source files in large,
real source systems directly, producing ASTs containing
preprocessor conditionals. The unparsable balance tends to
use preprocessor directives in unstructured ways. Figure 4

before: (*Z)[a>>2]=(*Z)[a>>2]+1;

after: (*Z)[a>>2]++;

Figure 3

if (. . .)
 { . . .

#if (. . .)

 } else {

#endif

 . . .

 };

Figure 4: Badly nested preprocessor directives and
language conditionals

shows one example, in which the nesting of the
preprocessor conditional is inconsistent with the nesting of
the if statement. The reaction of most staff to this kind of
trick is first, horror, and then second, to insist on removing
the trick from the source. Doing such repairs on 50K
SLOC of C code can take an afternoon. So with some
motivated code cleanup help, we are able to read large
systems. Of course, tricky idioms common to a system can
simply be added to the grammar, and then transformed
away.

8 Partial Evaluation

A method for simplifying programs when program
parameters are known is called partial evaluation [8]. The
basic idea is that computations having one or more constant
operands often have algebraic rules that show equivalence
to often much simpler computations (e.g., pow(x,n), the
C idiom for xn, when n is 2, can be replaced by x*x).
Often, there is a cascade of simplifications when a complex
operation decays into a constant, feeding further
simplifications (e.g, x/pow(x,n) when n is 1 reduces to
just 1 for nonzero x).

An industrial strength transformation system can
encode the basic partial evaluation rules directly, in the
surface syntax forms of the language being simplified.
Figure 5 shows the rules from the previous paragraph.

Figure 6 shows partial evaluation rules for Boolean
expressions in preprocessor conditionals. These handle
partial evaluation of Boolean expressions in preprocessor
expressions. We don’t need to write rules for all
combinations of commutative operators (e.g., “0 || \e”)
because we have declared the grammar rules that
correspond to those operators as associative-

commutative, and so the matcher knows to try the other
orders.

Sophisticated partial evaluation for procedural
languages often requires data flow analysis to determine
how optimized results in one part of the program may
enable optimizations in another part, such as when a
constant is assigned to a variable used and updated in many

other places in the code. For preprocessor simplification,
we do not need much of this, as most preprocessor
variables are assigned once, and preprocessor conditional
expressions are completely functional. In fact, the DMS
preprocessor does a kind of dataflow analysis of
preprocessor values across preprocessor conditionals, but
that discussion is outside the scope of this paper. More
importantly, no preprocessor variable assignment inside a
conditional can affect what the conditional or its containing
parents will do.

We implement preprocessor conditional removal as
partial evaluation using rewrite rules, with known constant
values for selected configuration aspects. We count

rule or_true(e:ppexp): ppexp->ppexp:
 “\e || 1” rewrites to “1”.

rule or_false(e:ppexp): ppexp->ppexp:
 “\e || 0” rewrites to “\e”.

rule and_true(e:ppand): ppand->ppand:
 “\e && 1” rewrites to “\e”.

rule and_false(e:ppand): ppand->ppand:
 “\e && 0” rewrites to “0”.

rule not_true(): ppterm->ppterm:
 “! 1” rewrites to “0”.

rule not_false(): ppterm->ppterm:
 “! 0” rewrites to “1”.

rule parenthesesK(n:NATURAL):
 ppexp->ppexp:
 “(\n)” rewrites to “\n”.

ruleset boolean_partial_evaluate =
 { or_true, or_false,
 and_true, and_false,
 not_true, not_false,
 paranthesesK }.

Figure 6: Preprocessor expression
Boolean equation partial evaluation

rule simplify_x_squared(e:exp):
 product-> product =
 “pow(\e,2.)” rewrites to “\e*\e”
 if no_side_effects(e).

rule simplify_divide_by_1(e:exp):
 product->product =
 “ \e / 1 “ rewrites to “\e”.

Figure 5: Some partial evaluation rules in C

rule delete_SDOS(): ppexp->ppexp:
 “SDOS” rewrites to “0”.

rule fast_newline(): ppexp->ppexp:
 “CRLFDelay” rewrites to “0”.

rule one_display(): ppexp->ppexp:
 “NumberOfScreens” rewrites to “1”.

ruleset clean_up =
 { delete_SDOS, no_newline_nulls,
 one_display_only }.

Figure 7 Rewrites encoding future permanent state
of dead configuration aspects

heavily on chains of simplification to carry out the actual
removal process.

Application of partial evaluation on abstract C
preprocessor directives was considered by [5], but he did
not build a running system.

9 Rewrites for Preprocessor Simplification

We need three sets of rules to remove useless
preprocessor directives:

1) Custom rewrites specifying which configuration
parameters are permanently set

2) Boolean algebra partial evaluation for the
constants true and false (Figure 6).

3) Preprocesser conditional simplification for true
and false conditions.

The first set is shown in Figure 7. Their purpose is to
specify the permanent future status of the configuration
parameter(s) that we wish to remove, and are determined
by the specific application we wish to revise. The syntax
class ppexp refers to “preprocessor expressions”, which
are distinct from the syntax class for normal C expressions,
expr. We package the individual rules into a rule set, to
make it easier to apply them all as a group. In general, this
rule set is likely to be a very small set, because we discover
the need to remove configurations rarely, encode the set of
interest, and then run the removal process.

The preprocessor Boolean condition rewrites in Figure
6 is the second set. A subset of the third set of rewrites are
shown in Figures 13 and 14. These are required to partially-
evaluate preprocessor conditionals when the condition
status is known to be false (0) or true (1). The number of
rules is explained by the combinatorial properties of #if,
#elsif and #else in the grammar. In fact, we only show
the rules for preprocessor directives allowed at file scope.

Nearly identical rules are required for preprocessor
conditionals allowed at other points in the grammar, such
as at statement-list level. The Boolean rewrites and
preprocessor conditional simplification rules are used for
every preprocessor removal.run.

10 Application and Results

Using the tools to remove conditionals is
straightforward. The dead configuration aspects are coded
as rules, added to the preprocessor partial evaluation rules,
and supplied as the rules base for DMS to use (Figure 8).
The source file(s) of interest are parsed using the C
grammar definition, the rules are also parsed using that
definition, and then DMS applies the rules to carry out the
partial evaluation with respect to the dead configuration
aspects. The result of applying Figure 6 to Figure 1 is
shown in Figure 9.

For ANSI C, the actual set of rewrites is rather larger
than is shown here because of the number of places

#ifndef Unix
#define Unix 1
#endif

…
char filename[132];

…
#if (Unix)&!DEMOS
 append_to(&filename,&extension);
#endif
#if Unix
 if (errno=fopen(&filename,readmode))
 { exit(errno); }
#else // DEMOS

…
#endif

Figure 9: Preprocessor simplification result

Figure 8: Preprocessor Removal Process

DMS
Revised
C Source
File

C Source File

Rewrite rules
for dead aspects

C Grammar
& Prettyprinter
Definition

Preprocessor
Partial Evaluation
Rewrite Rules

preprocessor conditionals are allowed in the grammar.
Nonetheless, it took one-person day to encode several
hundred similar rules, and one day to test the complete set
(of course, we had already built the C grammar for other
reengineering activities, and paid the cost of learning how
to use the tools). DMS was then applied to a commercially
successful software system of 1.5 million SLOC in 1800
files, and carried out fully automated preprocessor removal
for about 80% without intervention. The remaining files
required hand-remediation of unstructured preprocessor
directives before automated removal was successful. The
customer for whom this work was done estimated that 10
weeks was removed from a very busy schedule.

11 Future Work

For languages having real “pre” processors, there are
still some problems when the preprocessor conditionals fail
to nicely nest with the language structures. Our practical
experience is that these problems can be fixed manually at
modest cost, and those fixes will make the code not only
more understandable to the software engineers, but make it
that much easier to apply automated tools for the next
interesting task. However, being able to handle these cases
would make the tools materially easier to apply on large
systems. We plan to parse such fragments as a stream of
trees, with an assembly constraint corresponding to the
nonterminal around the largest unparseable chunk. It is our
understanding that this may not work with sophisticated
preprocessor usage possible with the PL/I preprocessor.

One can avoid this difficulty in new language designs,
by integrating the “preprocessor” directives at suitable
places in the language syntax. We have already done that
with our internal parallel-processing language,
PARLANSE, with benefits accruing in simplified parsing
and analysis.

Our present tool also does not handle cascaded
preprocessor assignments. As a consequence of removing
a conditional from around a line such as #define FOO 1,
FOO becomes clearly a known constant, and further
simplifications can occur. When a conditional is removed,
it is straightforward to rescan the suddenly unconditional
trees to detect such assignments. One could then use a
procedural transform to implement the additional
configuration aspect rewrite (i.e., substituting the value),
thereby enabling possibly further simplifications.

Conclusion

We considered preprocessors as compile-time text
editors, and the permanent role they play in economically
configuring large systems for many platforms. We have
discussed the problem of removing defunct configuration

aspects by removing their implementing preprocessor
conditionals from real source codes by using partial
evaluation methods.

To carry this out in practice, one needs industrial
strength program transformation systems, such as DMS,
that allow one to specify the target language, the basic
partial evaluation rules, and rules that specify which
configuration aspects are to be removed.

These tools have been automatically applied to large
suites of C code, producing correct results in a few hours,
saving large amounts of manual modification, and saving
future maintenance costs. Such tools can easily be
reconfigured for other programming languages having
preprocessor directives.

Such industrial strength transformation systems promise
to make massive software modifications much more
practical, and therefore much more common.

References
[1] I. Baxter, “Design Maintenance Systems”, Comm. of the ACM
35(4), ACM, April 1992.

[2] I. Baxter and M. Mehlich, “Reverse Engineering is Reverse
Forward Engineering”. 4th Working Conference on Reverse
Engineering, IEEE, 1997.

[3] I. Baxter and C. Pidgeon, “Software Change Through Design
Maintenance”. Proc. International Conference on Software
Maintenance, IEEE, 1997.

[4] I. Baxter, et al, “Clone Detection Using Abstract Syntax
Trees”, Proc. International Conference on Software Maintenance,
IEEE, 1998.

[5] J. Favre, “A Rigorous Approach to Support the Maintenance
of Large Portable Software”, Proc. Conference on Software
Maintenance and Reengineering, IEEE, 1997.

[6] http://math.polytechnique.fr/cmat/auroux/prog/gpp.html

[7] Y. Hu, E. Merlo, M. Dagenais and B. Lague, “C/C++
Conditional Compilation Analysis Using Symbolic Execution”,
Proc. International Conference on Software Maintenance, IEEE,
2000.

[8] N. Jones, et al, Partial Evaluation and Automatic Program
Generation, Prentice-Hall 1993

[9] PARLANSE Reference Manual, Semantic Designs, 1998.

[10] M. Tomita, Efficient Parsing for Natural Languages, Kluwer
Academic Publishers, 1988.

 [11], M van den Brand, et al, “Current Parsing Techniques in
Software Renovation Considered Harmful”, Proc. Sixth
International Workshop on Program Comprehension, IEEE,
1998.

Simplified C grammar

ppexp = ppand ;

[associative-commutative]
 ppexp = ppexp ‘|’ ppand ;

ppand = ppsum ;

[associative-commutative]
 ppand = ppand ‘&’ ppreln ;

ppreln = ppterm ;

ppreln = ppterm ‘==’ ppterm ;

ppterm = NATURAL ;

ppterm = ‘(‘ ppexp ‘)’ ;

ppterm = ‘!’ ppterm ;

Figure 12: Simplified C:
Preprocessor expression subgrammar

body = locals stmt_list ;

stmt_list = ;

stmt_list = stmt_list stmt ;

stmt = exp_stmt ;

stmt = ‘if’ ‘(‘ exp ‘)’ stmt ;

stmt = ‘{‘ body ‘}’ ;

stmt =
 ‘#’ ‘if’ ppexp ppNL
 stmt_list
 ppthen_stmt ;

ppthen_stmt = ‘#’ ‘endif’ ppNL ;

ppthen_stmt =

 ‘#’ ‘else’ ppNL ;
 stmt_list
 ‘#’ ‘endif’ ppNL ;

ppthen_stmt =
 ‘#’ ‘elsif’ ppexp ppNL
 stmt_list
 ppthen_stmt ;

Figure 11: Simplified C:
Statement list subgrammar

program = decl_list ;

decl_list = ;

decl_list = decl_list decl ;

decl = var_declaration ;

decl =
 type IDENTIFIER ‘(‘ params ‘)’
 ‘{‘ body ‘}’;

decl =
 ‘#’ ‘if’ ppexp ppNL
 decl_list
 ppthen_decl ;

ppthen_decl = ‘#’ ‘endif’ ppNL ;

ppthen_decl =

 ‘#’ ‘else’ ppNL ;
 decl_list
 ‘#’ ‘endif’ ppNL ;

ppthen_decl =
 ‘#’ ‘elsif’ ppexp ppNL
 decl_list
 ppthen_decl ;

Figure 10: Simplified C:
File scope subgrammar

Note: ppNL is the name of the C grammar token for
a preprocessor new line.

Rules to simplify preprocessor conditionals

rule decl_if_true_endif
 (d:decl_list): decl->decl =
 “#if 1 \&n \d #endif \&n”
 rewrites to “\d”.

rule decl_if_false_endif
 (d:decl_list): decl->decl =
 “#if 0 \&n \d #endif \&n”
 rewrites to “;”.

rule decl_if_true_else
 (d1:decl_list,d2:decl_list):
 decl->decl =
 “#if 1 \&n \d1
 #else \&n \d2 #endif \&n”
 rewrites to “\d1”.

rule decl_if_false_else
 (d1:decl_list,d2:decl_list):
 decl->decl =
 “#if 0 \&n \d1
 #else \&n \d2 #endif \&n”
 rewrites to “\d2”.

rule decl_if_true_elseif
 (d1:decl_list,e:ppexp,
 d2:decl_list,rest:ppthen_decl):
 decl->decl =
 “#if 1 \&n \d1
 #elsif (\e) \&n \d2 \rest”
 rewrites to “\d1”.

rule decl_if_false_elsif
 (d1:decl_list,e:ppexp,
 d2:decl_list,rest:ppthen_decl):
 decl->decl =
 “#if 0 \&n \d1
 #elsif \e \&n \d2 \rest”
 rewrites to
 “#if \e \&n \d2 \rest”.

Figure 13: #if partial evaluation rules

rule decl_elsif_true_endif
 (d:decl_list):
 ppthen_decl->ppthen_decl =
 “#elsif 1 \&n \d #endif \&n”
 rewrites to
 “#else \&n \d #endif \&n”.

rule decl_elsif_false_endif
 (d:decl_list):
 ppthen_decl->ppthen_decl =
 “#elsif 0 \&n \d #endif \&n”
 rewrites to “#endif \&n”.

rule decl_elsif_true_else
 (d1:decl_list,d2:decl_list):
 ppthen_decl->ppthen_decl =
 “#elsif 1 \&n \d1
 #else \&n \d2 #endif \&n”
 rewrites to
 “#else \&n \d1 #endif \&n”.

rule decl_elsif_false_else
 (d1:decl_list,d2:decl_list):
 decl->decl =
 “#elsif 0 \&n \d1
 #else \&n \d2 #endif \&n”
 rewrites to
 “#else \&n \d2 #endif \&n”.

rule decl_elsif_true_elsif
 (d1:decl_list,e:ppexp,
 d2:decl_list,rest:ppthen_decl):
 decl->decl =
 “#elsif 1 \&n \d1
 #elsif \e \&n \d2 \rest”
 rewrites to
 “#elsif 1 \&n \d1 \rest”.

rule decl_elsif_false_elsif
 (d1:decl_list,e:ppexp,
 d2:decl_list,rest:ppthen_decl):
 ppthen_decl->ppthen_decl =
 “#elsif 0 \&n \d1
 #elsif \e \&n \d2 \rest”
 rewrites to
 “#elsif \e \&n \d2 \rest”.

Figure 14: #else partial evaluation rules
Note: inside DMS patterns, actual newline characters
are treated as whitepsace. \&n is an escape
encoding an actual newline character

