
Kant

Automating the Design of Scientific

N93-17516

Computing Software

Elaine Kant

Schlumberger Laboratory for Computer Science
P.O. Box 200015

Austin, Texas 78720-0015 USA
kant_slcs.slb.com

Abstract

: SINAPSE is a domain-specific software design sys-

:tem that generates code from specifications of
equations and algorithm methods. This paper de-
scribes the system's design techniques (planning in
a space of knowledge-based refinement and opti-
mization rules), user interaction style (user has oP-

_ tion to control decision making), and representa.
- tion of knowledge (rules and objects). It also sum-

marizes how the system knowledge has evolved
:over time and suggests some issues in building
software design systems to facilitate reuse.

Introduction

SINAPSE is a domain-specific software design system
that generates code from specifications of equations

and algorithm methods. Our goal is for SINAPSE t.o be
a practical program-synthesis system that solves a re-
stricted class of problems. In particular, we aim to re-
duce mathematical modelers' programming chores by
enabling modelers to specify programs at the level at
which they are described in technical papers,

A trend toward three-dimensional modeling (previ-
ously too expensive to attempt for many applications)
is both making programs more complex and requiring
implementation on parallel architectures (for accept-

able performance). Both consequences of this trend
argue strongly for automatic code generation - to avoid
errors in programs and to save modelers from having
to learn about rapidly changing architectures. Because
efficiency of code and interfacing with other codes are
factors for many of our users, the code generation sys-
tem must be understandable and modifiable.

The current SINAPSE implementation focuses on one
class of algorithms - finite difference methods for solv-

ing partial differential equations. We have used the
system to generate about a dozen families of programs
for solving acoustic wave propagation problems of in-
terest to Schlumberger modelers. With these pro-
grams (for which no comparable hand-coded versions
existed), the modelers have achieved new results in
the application areas. However, all the programs were
specified by knowledgeable users, and we manually
optimized critical code sections after experimenting

with the automatically generated program. Current

research involves generating more efficient code and

making the system more easily accessible to modelers.
Although we primarily apply the system to finite dif-

ference problems, we have also generated several rather
different types of codes and have used subsets of the
system in other applications. Approximately half of

the system (consisting of the synthesis framework and
an array-level language to target code translation) is
independent of the domain, although focused on scien-
tific computing. We have used this part of the system
to generate some geometric modeling codes, starting
from an array-level specification lan .guage.

The lessons from SINAPSZ are similar to those of

other knowledge-intensive systems: it is important to
design representations that are close to the users' men-
tal models; abstraction of concepts is importan.t; and
rules and objects provide useful representation tech-
niques. An emerging concern is how to encourage more

sharing among software design systems. The last sec-
tion of this paper suggests that reuse of components
and reasoning algorithms may be possible among dif-
ferent software design systems themselves.

Specializing Design Techniques

The driving force in the implementation of SINAPSE
has been the collection of design techniques appropri-
ate for our applications. The classes of design tech-
niques as well as the problem itself then determine the
types of user interaction that are required. Finally, the
knowledge representation is strongly suggested "by the
reasoning techniques and user interface requirements.

Given our fairly narrow application domain and goal
of practical program synthesis, the most appropriate
design technique is knowledge-based refinement, in-
cluding the application of optimizing transformations.
Refinement choices are made by heuristics or mod-

eler specification. Although our approach includes
knowledge-based optimization, as the performance de-
mands on synthesized code have scaled up, we have
seen more need for traditional types of optimization
such as code motion supported by data-flow analysis.

We have explicitly chosen not to use some types
of reasoning techniques. For example, learning about
choices in context and learning about run-time _ code
performance might eventually be appropriate, but we
chose not to address learning, discovery, or complex

80



searchissues in the current system. We also do not at-

tempt inference by th_rem proving; this would require
very detailed domain models before any progress could
be made, and these formalisms would make it difficult

to allow the kinds of not-strictly-correctness-preserving
approximations that modelers frequently make. How-
ever, we are attempting to develop a clean character-
ization Of the semantics of the synthesis constructs.
This is a good guideline for domain analysis and helps
make the meaning of the constructs independent of the
implementation. A clean semantics makes a construct

easier to explain to users and easier for developers to
modify.

The states in the problem space in which SINAPSE
operates include descriptions of (partially imple-
mented) programs and facts about the specifications
and implementations. The space is navigated by car-
rying out sequences of synthesis tasks. Originally we
tried to streamline the problem-solving mechanism by
letting the actions in program synthesis carry out the
navigation, with design choices being presented to the
user as needed, but this proved confusing to the users
and difficult to modify. Therefore we are moving to-
wards an explicit plan representation. We expect to
conclude by declaratively encoding the set of goals
about program function and performance, plans for
achieving those goals, and control knowledge about
which plans to use for differentcircumstances. The

plans consistof partially-ordered(sub)goals,bottom-
ing out at actionsthat includeasking the user forin-

formation,applying program refinementrules,and ap-
plying program optimizations.

A specificationin SINAPSE isa collectionof design
decisions,most of which can be thought of as con-

trolinformation about which program refinementsto

make, or which factstodeclare.In addition,sometimes
a specificationactually definesa new refinement and

then assertsthat the new alternativeisthe refinement
that should be made.

SINAPSE is implemented in Mathema_ica[Wo188].

Ma_hematica is both an algebraic manipulation sys-
tem, useful for scientific programming, and a program-
ming language with modern features such as a pattern
language and rules. Other implementation languages
would also be reasonable choices, but Malhematica al-
lows us to have everything in one language in which
our target users are comfortable.

Phases of Design

In order to make the system comprehensible to devel-

opers and end users, and to encourage collaboration
with others, we have divided the software design pro-
cess into a series of phases:

* problem set up

• algorithm synthesis

• program optimization

• target code generation

How common these stages are in other design systems
for scientific computation is an open question, but
evidence for them can be found in [PC91; AEH+89;

Kant

Coo90]. A more detailed, though somewhat dated, de-
scription of these phases is given in [KDMW91].

The first phase, problem set up, involves help-
ing the user define the problem. The result should
be a set of equations such as would be described in

a modeling article. In our application, problem set
up is accomplished by working through a network of
choices (goals and tasks) that set up the equations
to be solved. For applications about which SINAPSE
is knowledgeable, it presents parameterized equation
generators; otherwise the user must define the equa-
tions mathematically. 1 Mathematical formalization,
when the equations are not given directly by the user,
involves a relatively straightforward knowledge-based
expansion. Next, SINAPSE may reformulate the equa-
tions via simplification, normalization, and redundant
equation elimination. Other reformulations, such as
averaging of material values, depend on user specifi-
cation. Mathematica's algebraic manipulation is espe-
cially useful at this stage.

The problem set up phase should probably be viewed
as three distinct phases. Two, which are independent,
are describing the physical model in general terms,
reusable for a number of specific problems, and describ-
ing the target properties of the computing environ-
ment in which a specific problem must be solved. Prop-
erties of the target environment might include machine
architecture (such as type of parallelism available) and
limitations on run time and storage space. A specific
problem description would then be the next phase,
that would customize a physical model to a specific set
of knowns and unknowns (and any desired interpre-
tation or analysis of the computed results) and might
modify the equations to be used based on the specifi-
cation of target environment properties.

SINAPSE'S algorithm synthesis begins with select-

ing an algorithm schema corresponding to the mod-

eler'sdesign decision(s)and then fillingin the details.

This levelincludesallthe domain-specificcomputing

knowledge thatan applicationsexpertwould have,typ-
icallythe numerical approximation methods to be ap-

pliedto the equations. The types of implementation

decisionsare those that would be reported in a de-

tailedtechnicalarticle.At the end of thisphase,pro-

grams will be expressed in Psiam, an array-level lan-
guage that we are developing. The search for effective
combinations of design decisions is currently left to the
user if the default choices are not acceptable. Program
details are filled in by refinement rules. Elaboration

of the design decisions often involves the use of alge-
braic manipulation for computing approximations. If
desired, the modeler can specify fragments of code di-
rectly in Psiam. The schema instantiation may involve
elaborating parts of code such as initializations or out-

puts that eventually need to migrate to other sections

1In other applications, such as mechanics and circuits
problems, systems often have more detailed descriptions
of the physics of the systems and tools to instantiate the
physical laws in a specific problem. The instantiation often
involves much unguided object slot filling rather tha_a the
guided, dependent, goal satisfaction used in SINAPSE.

81



Kant

of code. The migration is done too explicitly now; we
will evolve to a more general mechanism with partial
orderings and data flow analysis.

Performance choices are made at the next stage,

program optimization. This level includes all the
types of knowledge that any good scientific program-
mer should know regardless of the application domain.
Some examples of design decisions made at this stage
are store vs. recompute decisions, data structure se-

lection (array representation, primarily space compres-
sion techniques), and the corresponding operator im-
plementations. Data and control parallelism from the
domain have been explicitly represented and main-

tained through the program transformations until, at
this level, parallelism is either exploited or, for tar-
get languages not supporting it, expanded into loop-
ing constructs or sequentialized. A number of optimiz-
ing transformations are applied. To support the data
structure selection and optimizations, there is some in-
ferencing to determine data types of dimensions, prop-
erties of arrays, and simplifications of conditionals (for
example, to transform conditionals on array indices
into loops with specific bounds). Currently SINAPSE
uses special case reasoning for such inferences; it would

benefit from an interface with an inequality prover and
probably other provers or decision procedures.

The result of expansions of the previous step is ex-
pressed in MathCode, another language that we have
developed. MathCode is a procedural language that
abstracts away from Fortran and C constructs but has
almost no remaining implementation freedoms. The fi-
nal phase of target code generation from MathCode
is accomplished by a recursive-descent parser with ac-
tion rules for each different target language.

Interacting with Users

Our initial concern in user interaction was simply
to ensure that modelers could specify their problems

and override SINAPSE's default design decisions. A
SINAPSE specification, which contains a set of design
decisions, might "ideally" contain just decisions at the
level of specifying the problem. In reality, of course,
the system does not have enough information to make
all the algorithm and implementation choices. Even
when the system thinks it has enough knowledge, not
all modelers will agree with the choices. The evolution
of these aspects of the interface will be discussed here.
Some other issues concerning the modeler's interface to
scientific codes are outside the scope of this discussion.
For example, while our total environment will involve
an interface for specifying the geometry of the world
being modeled and an interface for visualization of the
results, these are largely separate research efforts.

The philosophy of partitioning the problem-solving
load between the user and SINAPSE was discussed in

[Kan90]. The conclusions, to which we still subscribe,
can be summarized by:

* SINAPSE should structure the problem-solving ses-
sions because people are smarter than software de-

sign systems and can adapt; however, SINAPSE

should present the user with significant decision

points and alternative implementation choices that
match problem-solving models.

• SINAPSE should cooperate by making suggestions
(heuristics about appropriate choices, help in finding
similar specifications or concepts); however, people
should have ultimate veto power over system choices.

• SINAPSE should be able to explain, at least mini-
mally, specification choices and decisions that have
been made.

• SINAPSE should have a system for helping users and
developers add new knowledge.

• SINAPSE should share knowledge bases so progress

for any purpose (synthesis, explanation, knowledge
acquisition, or system integration) is tested by and
contributes to progress for all purposes.

Current Interface

Currently, the user must be reasonably knowledgeable
to set up a SINAPSE specification. Specifications are
usually made in a text file that is loaded at the begin-

ning of a session, but most choices can also be spec-
ified interactively with simple menus (for enumerable
choices) or fill-in-the-blank interfaces. Also, although
program fragments can be specified-at the array level

(effectively defining new refinement rules at specifica-
tion time), there is no interactive support for this. In
the interactive mode, the user can request text string
explanations of the decision issues, alternatives, and
system heuristics. Answers provided by the user are
checked against legitimate patterns. In addition, the
user can confirm or modify interactively the choices
suggested by system heuristics or a previously loaded
text-file specification. SINAPSE can write out a text
file of the decisions made interactively, or made by a
mix of previously specified text and interactions.

We have begun to make SINAPSE more accessible
to modelers. We are adding pointers to examples
of specific choices and their realization in target pro-
grams based on our demo suite. A graphical interface
with modern menus, multiple status and help windows,
and hypertext navigating is being implemented, and a
minimalist-style user manual is being written. Because
of the large number of design decisions and the different
classes of anticipated users (some modelers care more
about approximation method choices, some about ef-
ficiency of implementation), we also will need a mech-
anism to control which design decisions are visible to
the user. One possibility is to make visibility depen-
dent on the phase in which the decisions are made and
on whether the decisions are based on hard constraints

(forced choices) or heuristics or simple defaults.

Declarative Decision Structures

A good interface is critically dependent on the cor-
rectness and understandability of the underlying do-
main models. Indeed, users cannot even write text-file
specifications if they do not have a good understand-

ing of what needs to be specified. Although we have
had some difficulty in explaining how the system works
to different domain experts, the specification language

82



Kant

seems to be converging as we gain better understand-
ing of the domain. Earlier versions of SINAPSE did not
have all decisions explicitly represented, but we are
adding a definition mechanism that ensures that Ml
design decisions are properly inserted in a global task
network. Correctly representing the domain means not
only having the right set of design decisions, but order-
ing the decisions sensibly and representing dependen-
cies between decisions. Although SINAPSE was able to
generate the same set of programs with a more un-
structured representation, having a good, declarative
representation of the decision structure turns out to be
critical for acquiring a specification, for storing out a
specification in text format for later use, and for ex-
plaining specifications and system decisions to users.

Dependencies between Decisions

An explicit representation of all dependencies between
design decisions would be useful for helping the user
understand what must go into a specification, for
recording specifications made interactively, and for re-
playing revised specifications. For example, the depen-
dency network helps the user understand that a par-
ticular decision may not even be relevant unless some
other set of choices has been made. SXNAPSEdistin-
guishes between user-specified decisions and decisions
inferred by the system based on those decisions. Only
decisions in the first class need be recorded in the text-
file specification. Decisions in the second class can be
made again automatically if the specification is resub-
mitted. This argument assumes a static synthesis sys-
tem. If more alternatives for a decision are added at a
later date, the existing heuristics may no longer force
a choice. Hence, it might also be useful to record the
full history of inferences to help the user augment the
specification in the face of an evolving system.

Currently, synthesis times are all under 20 minutes,
and the decision making portions are usually on the
order of minutes, so simply recording the primary de-
cisions and recomputing the rest has been acceptable
and it has not seemed necessary to build a fuU-fledged
truth maintenance system. We do have a simple de-
pendency network that records definitions and uses of
synthesis facts. Because we wish to record decision de-
pendencies for purposes of explanation, at some point
the expense of building an incremental change system
may be justified.

Because the user can help make implementation de-
cisions, we also foresee a need for representing de-
pendencies between user specifications. This general
phenomenon of specifications accommodating to im-
plementations is discussed in [Swa82]. One example
that we have seen in SINAPSE is that a modeler may
combine periodic and taper boundary declarations to
implement an absorbing boundary condition when the
target language is SIMD Connection Machine Fortran
(to enable the use of an efficient circular shift oper-
ation). Even if a boundary isn't really periodic, the
tapering operation makes the effective boundary value
nearly zero on both edges, which means declaring the
boundary to be periodic is not harmful. These depen-

dencies should be recorded because if the target archi-
tecture is changed, we want to reconsider the choices of
periodic and taper boundaries (even though both were
user-specified) in the light of the new architecture.

Ordering Decisions

Users are sensitive to the order in which specifica-
tion decisions are made; this order must make sense
to them. Ordering is constrained by dependencies be-
tween decisions. In general, of course, the ordering
of the decisions will follow the ordering of the phases
described in the previous section, with implementa-
tion decisions such as data structure representations
following problem set up specifications such as bound-
ary conditions. However, some details can vary with
the application. For example, in some cases all depen-
dent variables may depend on the same independent
variables so it might make sense to define independent
variables first and then list dependent variables. In
other cases, it might make more sense to define each
dependent variable in terms of its specific independent
variables. To support this, SINAPSE can present a dif-
ferent set of design decisions with alternative orderings
for different applications.

Currently, when used in the interactive mode, the
SINAPSE system presents the design choices in a lin-
ear sequence, and modelers do not always understand
why a particular ordering is used. It would help con-
siderably if we represented the partial ordering on the
design choices, with a user interface that allows specifi-
cation according to the partial ordering rather than an
arbitrary linearization of that ordering. We do believe
however that the system should explicitly present the
decisions in the partial ordering rather than expecting
the user to write the decision in arbitrary order in a
text file or to navigate around a large collection of ob-
jects and to know what properties must be filled in or
what commands must be issued. We plan to experi-
ment with a graphical depiction of the decision network
that is actively modified as choices are made.

Explanation

Representing information about decisions could help
generate good explanations for how to set up specifi-
cations or why the system made the specific choices
[WMK92; SwaB3]. It both cases, a likely priority is:
most heavily weight the choices involving problem de-
scription decisions (user choices before system choices),
then the state of the implementation design so far, then
the user's generic preferences, then the system's heuris-
tic rules, and finally the system defaults.

Representing the Knowledge

The representation of knowledge in Sinapse has been
discussed elsewhere [KDMW91] and so will not be re-
peated in detail here. We simply note that our goals
for code generation and user interaction suggest that
our knowledge representations be declarative, object-
oriented descriptions of design choices and algorithm
schemas. The object-oriented representation for de-
sign constructs includes the use of multiple inheritance,

83



Kant

with a small number offairlyfiathierarchiesforalgo-
rithm type,applicationtype,and so on. As discussed

earlier,sincethe initialsystem design,the importance

ofmore explicitgoals and plans for the user interface

has become clear.In additionto the declarativerepre-

sentations,there are procedural languages that can be
used in describingprograms: Psiam at the arraylevel,

and MathCode at the imperative level.The seman-

ticsof Psiam are stillevolving;MathCode isthe most
mature and stableof allthe representations.Maihe-

matica'spatternmatching and symbolic simplifications

are usefulindefiningtransformationrulesforboth re-

finement (elaboration)and optimization.Recently we
have alsoadded a mechanism torecordsome ofthe ma-

jor transformationsteps(by transformationname and

by beforeand afterstates).While we do not expect to
record every singletransformation step,we expect to

eventuallyhave more controlover transformationap-

plications;currentlymost are just anonymous Math.

ema_ica rules that firewhenever they match rather

than being explicitlyapplied. Most likelythere will

be named setsoftransformationrulesthat are applied
at specificphases.

Evolving the Knowledge

To measure the evolutionofknowledge in SINAPSE, for

the past 16 months we have kept recordsabout changes

to the system. A regressiontestsuiteismaintained so

that changes can be testedforcompatibilityand com-

pared for performance. Although the recordsare only

asgood as the effortpeople put intokeeping them and

more carefulanalysisisneed, some rough generaliza-
tionscan be made.

Overall,the totalsystem has grown steadily.The

initialeffort,before detailedrecords were kept, was

mostly in adding domain knowledge and very primi-

tivecode generation knowledge. Since that time, we

have focused on generatingefficientcode for multiple
targetlanguages and architectures,on adding domain

knowledge that fillsgaps in our applicationdomain,

and on making the system more understandable viaad-
ditionalexplicitknowledge about design decisionsand

explicitrepresentationof dependencies between deci-

sions. There have been no huge waves of expansion
and compression of the entiresystem representation,

although individualcomponents do grow and shrink

as knowledge isadded or more conciselyrepresented.

Some basicinformation about sizemay give a gen-

eralpictureofthe evolutionofknowledge. The current

system isnow more than 20,000 linesof Malhematica
code, a 38% increaseover the system of 16 months

ago. The declarativerepresentationsof the domain

knowledge and problem-solvingstructurehave grown

the most - from 13% to 19% ofthe system,a 111% in-

crease.There are currentlyabout 100 types of design
factsof the fill-in-the-blankform and 33 menu-choice

decisionswith an average of 3 alternatives.There are

currentlyabout 60 program-synthesistasks;as wellas

adding new tasks,the ordering among the taskshas

been refinedover time. Procedural knowledge about

how to refinedomain descriptionsto algorithms and

coding constructshas grown only 15% and slippedfrom

41% to 35% of the system. (No count on the number
ofrulesor functionsisavailable.This isa placewhere

the content of the knowledge has increased,but the

representationhas gotten more concise,so the overall

growth lookslow.) Knowledge about code generation
has increased35%, but as a percentage of the entire

system held almost even, moving from 30% to 29%.

(Much of the work that has gone into code optimiza-
tionisnot complete and isnot reflectedin the version

of the system described here. The code-optimization
techniqueswilladd approximately 5,000 more linesof

code.)The program-synthesisframework, while grow-

ing 54%, has only gone from 16% to 17% of the total

system. The growth has been in the areas of mech-

anisms for the expanded knowledge about synthesis

tasksand the recordingofmajor transformationsteps.

Of the 360 recorded changes tothe system (interms

of number of entries,not number of linesof code or

numbers offactsinvolved),30% have involvedchanges

to the internalrepresentationor knowledge about the

program-synthesisprocess,15% have been changes vis-
iblein the human interface,15% have been changes

to domain knowledge, 35% changes to programming

knowledge (reflectedinthe generated code),and 5% to

the operatingsystem interface.Overall,20% of these

changes were describedasnew capabilities,24% asgen-
eralizationsof existingcapabilities,20% as bug fixes,

5% as efficiencyimprovements, 28% as improvements

in the clarityof the system or the code itgenerates,
and 5% as other.

The frequentoccurrenceofchanges toimprove repre-
sentationclarityreflectsboth improved understanding

ofthe domain and deficienciesin the originalrepresen-

tationsof design goals and actions. Improvement is

stillneeded in expressing dependencies between deci-

sions,both the orderrequiredby the decisions,interms

ofdefinition-usechains,and task-orderingpreferences.

We alsoexpectitwould be usefulto be ableto express
a differencebetween hard constraints(forcedchoices),

heuristicsbased on availableinformation,and default

choices(based on no information).

Analyzing the types ofchanges that are made should

help us determine what sort of knowledge acquisition
tools we should build. At present only a minimal

number of rudimentary knowledge-building aids exist

in SINAPSE. They help inspect the structureof syn-

thesistasksand dependencies and check forcomplete-
hess of information about design decisions.Based on

analysisofthe changes and conversationswith model-
ers,we have identifieda small number ofknowledge-

acquisitionactivitiesthat we would liketo support

more automaticallyfor end users as wellas for devel-

opers.These activitiesincludethe additionofnew ap-
proximation operators,of variationson input/output

handling,ofnew algorithm schemas, and the packaging
ofexistingalgorithmsinsideuser-definedouter loops.

Sharing among Design Systems

The amount ofknowledge requiredforautomating soft-

ware design is very large,even for quite restricted

84



Kant

classes of problems. The automated software design
community would be likely to make faster progress if
it explored the possibilities of reuse among design sys-
tems as well as reuse within a single domain-specific
system. How do we design our systems to facilitate
this sharing? Possibilities include reuse of system com-
ponents (some domain-independent), reuse of reason-
ing algorithms, and reuse of interface languages (such
as a Psiam-like array-level language). Similar propos-

als have been made before of course, such as generic
tasks for expert system building blocks [Cha_6], com-

positional modeling for engineering modeling [FFgl],
standardization work in the knowledge-representation
community, and the suggestion of working out theories
for program synthesis [Smigl].

Reuse of system components might be possible if
we could divide systems into components with well-
defined interfaces. This means we first need to agree

on the meaning or content of any specification lan-
guages or intermediate representations. We also need
to formalize the form of the interfaces. Ironically, the

methodology for figuring out how to implement a spec-
ified need in terms of existing components, or how to
adapt components to a function, will probably itself
exploit automated software design techniques. Some
components may be large, some may be clusters of
knowledge about well-defined concepts.

In SINAPSE we are attempting to identify some ma-
jor phases in the design of scientific computing soft-
ware and to provide different languages for some of
the levels. The languages may vary to exploit math-
ematical formulations, array-manipulation, and con-

ventional applicative languages so that specifications
can be entered in the most convenient style. Next, we
need to determine whether these stages make sense for
other applications. Within these levels, there might
be formalizations of abstractions such as coordinate

transforms, pointers, I/O, and parallelization. Ideally,
SINAPSE would then be able to interface to other sys-
tems, for example to generate a different target lan-
guage, or call subroutines rather than generate code
for specific tasks.

The reasoning-technique (shell) approach is another
cut at providing tools. We might ask what sorts of
tools for different reasoning strategies would be useful
for automating software design. For example, SINAPSE

could use someone else's inequality prover, or an out-
side tool for analyzing data flow, or an expression opti-
mizer to minimize operator costs according to a declar-
ative cost model or to order for optimal numerical sta-
bility. It would be useful to have language-independent
compiler optimization tools.

If we could find a useful set of common tools or com-

ponents, major barriers (besides the not-invented-here
syndrome) might be standardizing the interfaces and
achieving portability of tools. Even though it is now
possible to interface many different languages, in a sys-
tem with multiple implementation languages, the over-
head in both execution and modifiability can be quite

high. Neverless, even if it requires reimplementation, a
clearly specified set of tools and algorithms for accom-

plishing the goals of the tools should facilitate reuse.

Acknowledgements

Current and past members of the SINAPSE project who
should be recognized for their work on the concepts
and implementation of the system include Ira Baxter,
Hung-Wen Chang, Francois Daube, Bill MacGregor,
and Joe Wald. Many thanks to Ira Baxter and Ursula
Wolz for comments on drafts of this paper.

References

H. Abelson, M. Eisenberg, M. Halfant, J. Katzenel-
son, E. Sacks, G. J. Sussman, J. Wisdom, and K. Yip.
Intelligence in Scientific Computing. Communications
of the A CM, 32(5):546-562, May 1989.

B. Chandrasekaran. Generic Tasks in Knowledge-
Based Reasoning: High-Level Building Blocks for Ex-
pert System Design. IEEE Expert, 1(3):23-30, Fall
1986.

G. O. Cook. ALPAL, a Program to Generate Physics
Simulation Codes from Natural Descriptions. Inter-
national Journal of Modern Physics, 1(1):1-55, 1990.

B. Falkenhainer and K. D. Forbus. Compositional
modeling: finding the right model for the job. Artifi-
cial Intelligence, 51:95-143, 1991.

E. Kant. Human and Computer Responsibilities in

Program Synthesis. In Workshop Notes-Knowledge-
Based Human.Computer Communication, pages 65-
67, Stanford, CA, March 1990.

E. Kant, F. Daube, W. MacGregor, and J. Watd.
Scientific Programming by Automated Synthesis. In
M. R. Lowry and R. D. McCartney, editors, Automat.
ing Software Design, chapter 8, pages 169-205. AAAI
Press/The MIT Press, Menlo Park, CA, 1991.

R. S. Palmer and J. F. Cremer. SIMLAB: Automat-

ically Creating Physical Systems Simulators. Techni-
cal Report TR 91-1246, Department of Computer Sci-
ence, Cornell University, Ithaca, New York, Novem-
ber 1991.

D. Smith. Theory-Based Support for Software De-
velopment. In Workshop Notes-Automating Software
Design: Interactive Design, pages 162-165, Los An-
geles, CA, July 1991.

W. Swartout. On the Inevitable Intertwining of Spec-
ification and Implementation. Communications of the

A CM, 25(7):438--440, July 1982.

W. Swartout. XPLAIN: A System for Creating and
Explaining Expert Consulting Systems. Artificial In-
telligence, 21(3):285-325, September 1983.

U. Wolz, K.R. McKeown, and G.E Kaiser. Auto-
mated Tutoring in Interactive Environments: A Task-
Centered Approach. In M.J. Farr and J. Psotka, edi-
tors, Intelligent Instruction by Computer, theory and
practice. Taylor and Francis, Washington DC, 1992.

S. Wolfram. Mathematica: a System for doing Math-
ematics by Computer. Addison-Wesley Publishing

Company, Reading, Massachusetts, 1988.

85


