
C-SAW and GenAWeave:
A Two-Level Aspect Weaving Toolsuite

Jeff Gray, Jing Zhang, Suman Roychoudhury
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294 USA

1-205-934-8643

{gray, zhangj, roychous} @ cis.uab.edu

Ira Baxter
Semantic Designs, Inc.
Austin, TX 78759 USA

1-512-250-1018
idbaxter@semdesigns.com

ABSTRACT
This demonstration will feature overviews of the C-SAW and
GenAWeave projects. The first half of the presentation will
introduce the concept of two-level aspect weaving, which unites a
model transformation tool with a program transformation engine.
From models representing an avionics application, it will be
shown how changes to model properties trigger corresponding
adaptations to the related source code. The second half of the
demonstration is focused on using a program transformation
engine to perform the task of aspect weaving. In particular,
several crosscutting concerns will be woven into an Object Pascal
application.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques,
D.2.6 [Software Engineering]: Programming Environments –
graphical environments and F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Systems.

General Terms
Design, Experimentation, Languages.

Keywords
Model-Driven Architecture, Aspect-Oriented Programming,
Program Transformation, Software Maintenance.

1. INTRODUCTION
The C-SAW and GenAWeave tools support evolution of object-
oriented legacy software through a two-level approach using
aspects [6]. The principal strategy of these tools is to generate
low-level transformation rules from higher-level domain
languages. The generated transformation rules, along with the
initial version of the application source code, serve as input to the
Design Maintenance System (DMS) from Semantic Designs [1].
The generated rules drive the transformation process in order to
produce a modified version of the source containing new concerns
that have been woven across the application code base. The

demonstration will show the ability to make rapid adaptations to a
large cross-section of an application through simple specification
changes at a high-level of abstraction.

As case studies, the demonstration will highlight the
transformation of two legacy commercial applications: a large
mission-computing avionics framework written in C++, and a
client-server enterprise management system implemented in
Object Pascal. In the avionics application, transformation rules are
generated from domain-specific models created in the Generic
Modeling Environment (from Vanderbilt University) [4]. Using
C-SAW [3], it will be shown that small changes in a
representative model can regulate concurrency and logging
policies across many C++ classes. The Object Pascal portion of
the demonstration will illustrate the use of DMS as the underlying
engine for an aspect weaver. A unique feature of the
demonstration is the ability to weave aspects into a legacy
language (not Java) at the source level using GenAWeave. The
remaining sections summarize C-SAW and GenaWeave.

2. MODEL-DRIVEN TRANSFORMATION
The first half of the demonstration will show the feasibility of
utilizing the capabilities of a program transformation system to
support parsing and source-level transformation of legacy code. In
particular, the C-SAW model transformation tool will be united
with DMS to enforce a causal connection between models and
corresponding legacy source through an approach that we call
model-driven program transformation (MDPT). A causal
connection occurs whenever any modifications are made to the
models, such that a corresponding change is applied to the source.

Figure 1 illustrates an overview of the MDPT concept. In our
approach, DMS is utilized as the underlying program
transformation mechanism. The core component of DMS is a term
rewriting engine that supports the powerful capabilities for pattern
matching and source translation. In the MDPT idea, domain-
specific model interpreters are constructed to generate the DMS
transformation rules from the evolving features of the instance
models. The corresponding legacy source code, along with the
transformation rules, will be fed into DMS. As a result, the legacy
source is transformed as the generated rules are applied by DMS.

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

Figure 1. Model-Driven Program Transformation

It is worth noting that the domain experts are not supposed to

understand the DMS rules. Domain experts modify the domain-
specific models according to any new requirements for the
system. After that, the transformation rules will be automatically
generated and the legacy source code will be transformed as a
consequence. The whole process is transparent and auto-driven by
the model interpreters.

The intrinsic benefit of this approach is large-scale adaptation
across multiple source files that are driven by model properties.
Such adaptation can be accomplished through minimal changes to
the models. C-SAW also provides an ability to perform aspect
weaving at the modeling level, in addition to the implementation
level. The two-level weaving approach will be a unique
contribution of this demonstration.

3. ASPECT TRANSFORMATIONS
As argued in [2], it is likely that aspect-oriented programming
(AOP) [5] will offer benefits to legacy systems that are coded in
languages other than Java. Yet, bringing AOP support to legacy
languages requires the availability of a parser for each language,
as well as an ability to perform transformations on syntax trees.
The demonstration will show our initial work at using DMS as the
underlying engine to support aspect weaving.
Several concerns will be woven into an Object Pascal application
using lower-level DMS transformation rules. The general meaning
of the transformations will be explained and the sequence of
actions needs to perform aspect weaving will be demonstrated on
the case study. The need for higher-level representations for
aspect languages, which translate down to the rules required by
DMS, will be motivated and an initial solution will be described.
Figure 2 shows our initial ideas for using DMS to generate aspect
weavers for various languages. This latter idea is still under
investigation and much work is sill needed, but a prototype of the
idea will be shown.

Figure 2. Aspect Weaving with DMS

4. FURTHER INFORMATION
Additional information about C-SAW and GenAWeave, including
video demonstrations and related papers, can be found at:

http://www.cis.uab.edu/gray/Research/C-SAW/
http://www.cis.uab.edu/gray/Research/GenAWeave/

5. ACKNOWLEDGEMENT
This work is supported by the DARPA Information Exploitation
Office (DARPA/IXO), under the Program Composition for
Embedded Systems (PCES) program.

6. REFERENCES
[1] Baxter, I., Pidgeon, C., and Mehlich, M., “DMS: Program

Transformation for Practical Scalable Software Evolution,”
International Conference on Software Engineering (ICSE),
Edinburgh, Scotland, May 2004, pp. 625-634.

[2] Gray, J., and Roychoudhury, S., “A Technique for
Constructing Aspect Weavers using a Program
Transformation Engine,” AOSD ’04, International
Conference on Aspect-Oriented Software Development,
Lancaster, UK, March 2004, pp. 36-45.

[3] Gray, J., Zhang, J., Lin, Y., Roychoudhury, S., Wu, H.,
Sudarsan, R., Gokhale, A., Neema, S., Shi, F., and Bapty, T.,
“Model-Driven Program Transformation of a Large Avionics
Framework,” Generative Programming and Component
Engineering (GPCE 2004), Springer-Verlag LNCS,
Vancouver, BC, October 2004.

[4] Karsai, G., Maroti, M., Lédeczi, Á., Gray, J., and
Sztipanovits, J., “Composition and Cloning in Modeling and
Meta-Modeling,” IEEE Transactions on Control System
Technology (special issue on Computer Automated Multi-
Paradigm Modeling), March 2004, pp. 263-278.

[5] Kiczales, H., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W., “Getting Started with AspectJ,”
Communications of the ACM, October 2001, pp. 59-65.

[6] Zhang, J., and Gray, J., “Legacy System Evolution through
Model-Driven Program Transformation,” EDOC Workshop
on Model-Driven Evolution of Legacy Systems, Monterey,
CA, September 2004.

Aspect
Source

Attribute
Evaluator

Set of generic
transformation

rules

DMS

Lexer

Parser
Delphi
Source

Transformed
Delphi Source

Pattern Instantiation

