

Using Clone Detection to Manage a Product Line

Ira D. Baxter
Semantic Designs, Inc.

www.semdesigns.com

idbaxter@semdesigns.com

Dale Churchett
Salion, Inc.

www.salion.com

Dale.Churchett@salion.com

1 Clone Detection to find Domain Concepts

Clone detection finds code in large software systems

that has been replicated and modified by hand.

Remarkably, clone detection works because people copy

conceptually identifiable blocks of code, and make only a

few changes, which means the same syntax is detectably

repeated. Each identified clone thus indicates the presence

of a useful problem domain concept, and simultaneously

provides an example implementation. Differences between

the copies identify parameters or points of variation.

Clones can thus enhance a product line development in a

number of ways: removal of redundant code, lowering

maintenance costs, identification of domain concepts for

use in the present system or the next, and identification of

parameterized reusable implementations. A slightly

surprising property is that clones sometimes reveal code

bugs directly by inspection of parameter bindings with

inconsistent actual or conceptual types.

This position paper sketches a work just started, to

review the clones found in a Java-based 250K SLOC web

application and determine their impact on the current

product and its next generation, currently being planned.

2 Application to Salion’s product suite

Salion, Inc. provides a product suite solution to its

customers comprised of multiple products built from a core

component base. The set of products enabled for a

customer is determined by Salion Professional Services

based on the customer requirements and matched against

the capabilities provided by each product within the suite.

The framework created to support the licensing

requirements defined by Salion's business model provides

seamless integration between each product. Adding new

products becomes a composition task for development

rather than new development. To enable the level of reuse

required for a product suite approach requires a core set of

components be developed, tied together with a software

configuration management system that handles the legal

combinations of core components.

Managing a set of core components is not an easy task

and becomes harder the large the system becomes. The

aggressive schedules demanded by software consumers and

a fast paced development cycle compounds the problem as

developers struggle to accomplish their tasks as quickly as

possible. In many cases, designing for reuse is the last thing

on a developers mind and cut-and-paste programming may

win the day.

By applying clone detection as part of a never-ending

mining and refactoring operation, Salion hopes to mitigate

the risk of cut-and-paste programming and reveal

abstractions that are either missing from the component

base or to identify services that are not being provided by

core components or subsystems that should be.

Early experiences have already proved effective, with

some surprising side effects such as detecting bugs in the

code, and revealing limitations of dependent technology

and for identifying potential future problems with class

explosion.

3 Clone Detection on Java

Semantic Designs has been developing automated clone

detection and removal technology (“CloneDR”) based on

comparing sequences of syntax trees [2]. The detection

technology is in turn built on top of DMS [1],

(www.semdesigns.com/Products/DMS/DMSToolkit) a

program transformation system parameterized by a

description of the language to be processed. For the

purposes of this experiment, a definition of Java was

provided to DMS. DMS in turn is based on parallel

computing foundations [3] to bring sufficient computing

power to bear for the arbitrary analysis and modification

problem problems DMS is generally expected to solve. For

clone detection, this alleviates the essentially N^2

computation cost induced by comparing every pair of trees.

The Java CloneDR has been applied to two previous

large Java software systems, the Sun Swing toolkit (some

230K SLOC having about 10% cloned code by volume, as

instances of about 1800 detected abstractions), and a 2

million-line enterprise resource planning system (showing

about 12% cloned code by volume, having some 7400

detected abstractions). It is clear that the clone detector

finds large numbers of code fragments deemed by the

engineers of being conceptually coherent and useful

enough to repeatedly steal.

We applied the Java CloneDR to Salion’s source code

base of 257K SLOC. It found 12.5% cloned code as

instances of some 1600 detected abstractions. This is

remarkably consistent with the other systems. There are

about 6500 very small clines, of size 3 lines or less, which

may or may not be interesting. At the other end of the

spectrum, there are 32 clones of at least 100 lines each in

size.

We have plans to apply the CloneDR to Salion’s

application several times in the coming year, to get a better

understanding of how the clone base evolves over time in

response to aggressive clone remediation action by Salion.

2 Detecting bugs in clones

Examining the clones for abstractions often leads to bug

discovery. Sometimes the bugs are directly obvious on

inspection. The following illustrates a clone having 73

instances that fails to set a value to a reasonable result if a

conversion error occurs.

Showing parameters as [[#n]], the abstraction for the

clone is:

The cure is replace this with a conversion procedure

that complains and produces a useful default value:

This type of fix is the classic purpose of the CloneDR

tool: to help find and repair a mistaken concept repeated

many times.

One can discover errors by type mismatches in the

parameters. This clone:

is a broken setter, and it was discovered because the

abstraction had 4 parameters instead of 3. Parameter #4

should have always been parameter #2:

3 Acting on abstractions found

Some initial analysis of discovered abstractions have

already caused architectural change in the next generation

product.

The most massively replicated clone is one of the

smallest: 1450 instances of the 3-line getXXXLabel()

clone. Discovery of this idiom has the UI developers

considering the use of a JSP Tag Library instead of putting

those methods in the beans. Implementing this would be

expected to be a big win because of the way the label

mechanism is currently implemented. There are 4 layers of

properties files in the application system. The first layer is

global information, the 2nd more specific to the UI

containing considerable information currently unused.

Therefore these procedures are dead and can be removed.

Keeping 1500 of these in sync would be a nightmare,

where the Tag Library can handle it automatically.

One of the detected clones indicated a problem waiting

to happen. The Salion product suite includes many large

business objects with many attributes that customers may

or may not wish to use. Salion can configure the system to

use/not use a subset. of these attributes per customer. To

date, only 4 business objects have been enabled with this

functionality, but others will follow. . The clone detection

results showed an area in this subsystem that would have

exploded for every business object added in the future.

Clones were discovered that revealed a mechanism the

UI developers created that should have been provided by

the core configuration subsystem i.e., the subsystem was

not enabling one of their requirements. The mechanism

developed by the UI team would have caused an explosion

of classes and methods (and clones) had it not been noticed.

The service will be refactored into the configuration

subsystem in a future release.

The architect is finding it easier to get a handle on the

subsystem design using the clone detection results. Going

Clone 46: 4 parameters, 4 lines from Line 387 to 390

File:…SearchParams.java:
 try {date = Integer.parseInt(dateStr); }

 catch (Exception e) {}

 date = Integer.safeCconvert(dateStr,0);

 try { [[#1]]= [[#2]]. [[#3]]([#4]]);}

 catch (Exception e) {}

Clone 33: 2 lines from Line 188 to 189

File ….SalionObjectImpl.java
 public void setCreatorGUID(String creatorGUID)
 { this.creatorGUID = guid;}

 public void [[#1]](String [[#2]])
 { this. [[#3]]= [[#4]]; }

public String getProfileLabel() {

 return (getString("profileLabel", "Profile"));

}

through each source file is not a good way, nor is reverse-

engineering in Rose, tried previously.

4 Next Steps

The clone analysis results are currently being reviewed

in detail by the project architect to get a sense of the

abstractions discovered, their potential value, and how that

value can be realized by either explicit refactoring of the

system to instantiate the abstraction directly, or by other

modifications of the system to enhance its quality.

References

[1] I. Baxter and C. Pidgeon, “Software Change Through Design

Maintenance”. Proc. International Conference on Software

Maintenance, IEEE, 1997.

[2] I. Baxter, et. al., “Clone Detection Using Abstract Syntax

Trees”, Proc. International Conference on Software Maintenance,

IEEE, 1998.

[3] PARLANSE Reference Manual, Semantic Designs,

1998.

